Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-18T19:48:55.710Z Has data issue: false hasContentIssue false

Cranial anatomy of Microsyops annectens (Microsyopidae, Euarchonta, Mammalia) from the middle Eocene of Northwestern Wyoming

Published online by Cambridge University Press:  28 May 2020

Mary T. Silcox
Affiliation:
Department of Anthropology, University of Toronto Scarborough, 1265 Military Trail, ScarboroughONM1C 1A4, Canada
Gregg F. Gunnell
Affiliation:
Division of Fossil Primates, Duke University Lemur Center, 1013 Broad St., DurhamNC27705, USA
Jonathan I. Bloch
Affiliation:
Florida Museum of Natural History, University of Florida, P. O. Box 117800, Gainesville, FL32611, USA

Abstract

The Microsyopidae are extinct mammals from the late Paleocene–late Eocene of North America and the late Paleocene of Europe. While results from phylogenetic analyses support euarchontan affinities, specific relationships of microsyopids to other plesiadapiforms (plausible stem primates), Euprimates (crown primates), Scandentia (treeshrews), and Dermoptera (colugos) are unresolved. An exceptionally well-preserved cranium of Microsyops annectens includes a basicranium that is generally primitive relative to that of other extinct and extant euarchontans in having: (1) a transpromontorial groove for an unreduced internal carotid artery (ICA) entering the middle ear posteromedially; (2) grooves (not tubes) on the promontorium, marking the course for both stapedial and promontorial branches of the ICA; (3) a foramen faciale that opens into the middle ear cavity, with the facial nerve exiting through a stylomastoid foramen primitivum; and (4) unexpanded caudal and rostral tympanic processes of the petrosal. The absence of any preserved bullar elements in the middle ear contrasts with that of other plesiadapiforms for which the region has been recovered, all of which have evidence of an ossified bulla. Microsyops lacks many of the specialized cranial characteristics of crown scandentians and dermopterans. The basicranial anatomy of microsyopids does not provide evidence in support of a clear link to any of the extant euarchontans, and suggests that the primitive morphology of this region in Euarchonta was little differentiated from that observed in the primitive placental mammals.

Type
Articles
Copyright
Copyright © 2020, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

deceased

References

Asher, R.J., Smith, M.R., Rankin, A., and Emry, R.J., 2019, Congruence, fossils and the evolutionary tree of rodents and lagomorphs: Royal Society Open Science 6: 190387 http://doi.org/10.1098/rsos.190387.Google Scholar
Audebert, J.B., 1799, Histoire naturelle des Singes et des Makis: Paris, Desray, 44 p.Google Scholar
Beard, K.C., 1991, Postcranial fossils of the archaic primate family Microsyopidae: American Journal of Physical Anthropology, Supplement 12, p. 4849.Google Scholar
Beard, K.C., and Dawson, M.R., 2009, Early Wasatchian mammals of the Red Hot local fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi: Annals of Carnegie Museum, v. 78, p. 93243.CrossRefGoogle Scholar
Bloch, J.I., and Gingerich, P.D., 1998, Carpolestes simpsoni, new species (Mammalia, Proprimates) from the late Paleocene of the Clarks Fork Basin, Wyoming: Contributions from the Museum of Paleontology, University of Michigan, v. 30, p. 131162.Google Scholar
Bloch, J.I., and Silcox, M.T., 2001, New basicrania of Paleocene–Eocene Ignacius: reevaluation of the plesiadapiform-dermopteran link: American Journal of Physical Anthropology, v. 166, p. 184198.Google Scholar
Bloch, J.I., and Silcox, M.T., 2006, Cranial anatomy of Paleocene “plesiadapiform” Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography, and the relationships of “plesiadapiforms” to Euprimates: Journal of Human Evolution, v. 50, p. 135.Google Scholar
Bloch, J.I., Silcox, M.T., Boyer, D.M., and Sargis, E.J., 2007, New Paleocene skeletons and the relationship of “plesiadapiforms” to crown-clade primates: Proceedings of the National Academy of Sciences, USA, v. 104, p. 11591164.CrossRefGoogle ScholarPubMed
Bloch, J.I., Chester, S.G.B., and Holroyd, P.A., 2015, Postcranial morphology of early Eocene Choctawius gives new insight on the relationship of microsyopids to other euarchontans: Society of Vertebrate Paleontology, 2015 Program and Abstracts, p. 91.Google Scholar
Bloch, J.I., Chester, S.G.B., and Silcox, M.T., 2016, Cranial anatomy of Paleogene Micromomyidae and implications for early primate evolution: Journal of Human Evolution: v. 96, p. 5881. doi:10.1016/j.jhevol.2016.04.001.Google ScholarPubMed
Bowditch, T.E., 1821, An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travelers: Paris, J. Smith, 115 p.Google Scholar
Bown, T.M., 1982, Geology, paleontology, and correlation of Eocene volcanoclastic rocks, southeast Absaroka Range, Hot Springs County, Wyoming: Geological Survey Professional Paper 1201-A, 75 p.CrossRefGoogle Scholar
Bown, T.M., and Gingerich, P.D., 1973, The Paleocene primate Plesiolestes and the origin of the Microsyopidae: Folia Primatologica, v. 19, p. 18.Google Scholar
Bown, T. M., and Rose, K.D., 1976, New early Tertiary primates and a reappraisal of some Plesiadapiformes: Folia Primatologica, v. 26, p. 109138.Google Scholar
Boyer, D.M., 2009, New cranial and postcranial remains of late Paleocene Plesiadapidae (“Plesiadapiforms,” Mammalia) from North America and Europe: Description and Evolutionary Implications [Ph.D. dissertation]: Stony Brook, State University of New York Stony Brook, 597 p.Google Scholar
Boyer, D.M., Silcox, M.T., Bloch, J.I., Coleman, M., and Dobrota, T, 2011, New skull and associated postcrania of Ignacius graybullianus (Mammalia, ?Primates) from the Eocene of Wyoming: Society of Vertebrate Paleontology 2011 Program and Abstracts p. 76A.Google Scholar
Boyer, D.M., Scott, C.S., and Fox, R.C., 2012, New craniodental material of Pronothodectes gaoi Fox (Mammalia, “Plesiadapiformes”) and relationships among members of Plesiadapidae: American Journal of Physical Anthropology, v. 147, p. 511550.CrossRefGoogle ScholarPubMed
Boyer, D.M., Gunnell, G.F., Kaufman, S., and McGeary, T., 2016, MorphoSource—Archiving and sharing 3D digital specimen data: Journal of Paleontology, v. 22, p. 157181.Google Scholar
Cartmill, M., and MacPhee, R.D.E., 1980, Tupaiid affinities: the evidence of the carotid artieries and cranial skeleton, in Luckett, W.P., ed. Comparative Biology and Evolutionary Relationships of Tree Shrews: New York, Plenum Publishing, p. 95132.CrossRefGoogle Scholar
Chester, S.G.B., Williamson, T.E., Bloch, J.I., Silcox, M.T., and Sargis, E.J.., 2017, Oldest skeleton of a plesiadapiform provides evidence for an exclusively arboreal radiation of stem primates in the Paleocene: Royal Society Open Science, v. 4, p. 170329. http://dx.doi.org/10.1098/rsos.170329.Google Scholar
Chester, S.G.B., Williamson, T.E., Bloch, J.I., Silcox, M.T., and Sargis, E.J.., 2019, Skeletal morphology of the early Paleocene plesiadapiform Torrejonia wilsoni (Euarchonta, Palaechthonidae): Journal of Human Evolution, v. 128, p. 7692.Google Scholar
Cope, E.D., 1882, Contributions to the history of the Vertebrata of the lower Eocene of Wyoming and New Mexico, made during 1881. I. The fauna of the Wasatch beds of the basin of the Big Horn River. II. The fauna of the Catathlaeus beds, or lowest Eocene, New Mexico: Proceedings of the American Philosophical Society, v. 10, p. 139197.Google Scholar
Cope, E.D., 1883, First addition to the fauna of the Puerco Eocene: Proceedings of the American Philosophical Society, v. 20, p. 545563.Google Scholar
Cope, E.D., 1884, The Vertebrata of the Tertiary Formations of the West. Book 1: Report of the United States Geological Survey of the Territories, v. 3, 1009 p.Google Scholar
Eaton, J.G., 1982, Paleontology and correlation of Eocene volcanoclastic rocks in the Carter Mountain area, Park County, southeastern Absaroka Range, Wyoming: University of Wyoming Contributions to Geology, v. 21, p. 153194.Google Scholar
Evans, H.E., 1993, Miller's Anatomy of the Dog: Philadelphia, W.B. Saunders, 1130 p.Google Scholar
Gazin, C.L., 1952, The lower Eocene Knight Formation of western Wyoming and its mammalian faunas: Smithsonian Miscellaneous Collections, v. 117, p. l82.Google Scholar
Gazin, C.L., 1968, A new primate from the Torrejonian middle Paleocene of the San Juan Basin, New Mexico: Proceedings of the Biological Society of Washington, v. 81, p. 629634.Google Scholar
Gervais, P., 1877, Enumération de quelques ossements d'animaux vertébrés recueillis aux environs de Reims par M. Lemoine: Journal Zoologie (Paris), v. 6, p. 7479.Google Scholar
Gingerich, P.D., 1976, Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates): University of Michigan Papers on Paleontology, v. 15, 141 p.Google Scholar
Gray, J.E., 1848, Description of a new genus of insectivorous Mammalia, or Talpidae, from Borneo: Proceedings of the Zoological Society of London, v. 1841, p. 2324.Google Scholar
Gunnell, G.F., 1985, Systematics of early Eocene Microsyopinae (Mammalia, Primates) in the Clark's Fork Basin, Wyoming: Contributions from the Museum of Paleontology, University of Michigan v. 27, p. 5171.Google Scholar
Gunnell, G.F., 1989, Evolutionary history of Microsyopoidea (Mammalia, ?Primates) and the relationship between Plesiadapiformes and Primates: University of Michigan Papers on Paleontology, v. 27, 157 p.Google Scholar
Gunnell, G.F., 2012, New uintasoricine (?Primates, Plesiadapiformes) from the earliest Bridgerian, latest Early Eocene of Wyoming: Journal of Paleontology, v. 86, p. 973978.CrossRefGoogle Scholar
Hoffstetter, R., 1977, Phylogénie des primates: Bulletins et Mémoires de la Société d'Anthropolgie de Paris, v. 4, série XIII, p. 327346.Google Scholar
Hooker, J.J., Russell, D.E., and Phélizon, A., 1999, A new family of Plesiadapiformes (Mammalia) from the old world lower Paleogene: Palaeontology, v. 42, p. 377407.CrossRefGoogle Scholar
Hunt, R.M Jr., and Korth, W.K., 1980, The auditory region of Dermoptera: morphology and function relative to other living mammals: Journal of Morphology, v. 164, p. 167211.CrossRefGoogle ScholarPubMed
llliger, C., 1811, Prodromus systematis mammalium et avium additis terminis zoographicis utriusque classis, eorumque versione germanica: Berolini, Berlin, Sumptibus C. Salfeld, 301 p.CrossRefGoogle Scholar
Janečka, J.E., Miller, W., Pringle, T.H., Wiens, F., Zitzmann, A., Helgen, K.M., Springer, M.S., and Murphy, W.J., 2007, Molecular and genomic data identify the closest living relative of primates: Science, v. 318, p. 792794.Google ScholarPubMed
Jepsen, G.L., 1930, Stratigraphy and paleontology of the Paleocene of northeastern Park County, Wyoming: Proceedings of the American Philosophical Society, v. 69, p. 463528.Google Scholar
Jepsen, G.L., 1934, A revision of the American Apatemyidae and the description of a new genus, Sinclairella, from the White River Oligocene of South Dakota: Proceedings of the American Philosophical Society, v. 74, p. 287305.Google Scholar
Kay, R.F., and Cartmill, M., 1977, Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species: Journal of Human Evolution, v. 6, p. 1953.Google Scholar
Kay, R.F., Thorington, R.W. Jr., and Houde, P., 1990, Eocene plesiadapiform shows affinities with flying lemurs not primates: Nature, v. 345, p. 342344.CrossRefGoogle Scholar
Kay, R.F., Thewissen, J.G.M., and Yoder, A.D., 1992, Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes: American Journal of Physical Anthropology, v. 89, p. 477498.Google Scholar
Kihm, A.J., and Tornow, M.A., 2014, First occurrence of plesiadapiform primates from the Chadronian (latest Eocene): Paludicola, v. 9, p. 176182.Google Scholar
Klaauw, C.J. van der, 1931, The auditory bulla in some fossil mammals with a general introduction to this region of the skull: Bulletin of the American Museum of Natural History, v. 62, 352 p.Google Scholar
Koenigswald, W. von, 1990, Die Paläobiologie der Apatemyiden (Insectivora s.l.) und die Ausdeutung der Skelettfunde von Heterohyus nanus aus dem Mittleozän von Messel bei Darmstadt: Palaeontographica A, v. 210, p. 4177.Google Scholar
Koenigswald, W. von, Ruf, I., and Gingerich, P.D., 2009, Cranial morphology of a new apatemyid, Carcinella sigei n. gen. n. sp. (Mammalia, Apatotheria) from the late Eocene of southern France: Paleontographica A, v. 288, p. 5391.Google Scholar
Leidy, J., 1868, Notice of some remains of extinct Insectivora from Dakota: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 1868, p. 315316.Google Scholar
Leidy, J., 1872, Remarks on fossils from Wyoming: Proceedings of the Academy of Natural Sciences, Philadelphia, 1872, p. 19–21.Google Scholar
Li, Q., and Ni, X., 2016, An early Oligocene fossil demonstrates treeshrews are slowly evolving “living fossils”: Scientific Reports, v. 6, p.18627.Google ScholarPubMed
Linnaeus, C., 1758, Systema naturae per regna tria naturae, secundum classes, ordines, genera species cum characteribus, differentiis, synonymis, locis: Editio decima reformata, vol. 1., Stockholm, Laurentii Salvii, 824 p.Google Scholar
MacPhee, R.D.E., 1981, Auditory regions of primates and eutherian insectivores: morphology, ontogeny, and character analysis: Contributions to Primatology, v. 18, 282 p.Google Scholar
MacPhee, R.D.E., and Cartmill, M., 1986, Basicranial structures and primate systematics, in Swisher, D.R., and Erwin, J., eds., Comparative Primate Biology, Volume 1: Systematics, Evolution, and Anatomy: New York, Alan R. Liss, p. 219275.Google Scholar
MacPhee, R.D.E., Cartmill, M., and Gingerich, P.D., 1983, New Palaeogene primate basicrania and the definition of the order Primates: Nature, v. 301, p. 509511.Google ScholarPubMed
MacPhee, R.D.E., Novacek, M.J., and Storch, G., 1988, Basicranial morphology of early Tertiary erinaceomorphs and the origin of Primates: American Museum Novitates, v. 2921, p. 142.Google Scholar
MacPhee, R.D.E., Cartmill, M., and Rose, K.D., 1989, Craniodental morphology and relationships of the supposed Eocene dermopteran Plagiomene (Mammalia): Journal of Vertebrate Paleontology, v. 9, p. 329349.Google Scholar
Maddison, W.P., and Maddison, D.R., 2018, Mesquite: a modular system for evolutionary analysis. Version 3.6: http://www.mesquiteproject.org.Google Scholar
Marsh, O.C., 1871, Notice of some fossil mammals from the Tertiary formation: American Journal of Science, v. 2, p. 3445.Google Scholar
Marsh, O.C., 1872, Preliminary description of new Tertiary Mammals. Parts I–IV: American Journal of Science, v. 4, p. 122128, 202–224.Google Scholar
Mason, V.C., Li, G., Minx, P., Schmitz, J., Churakov, G., Doronina, L., Melin, A.D., Dominy, N.J., Lim, N.T., Springer, M.S., and Wilson, R.K., 2016, Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates: Science Advances, v. 2, p. e1600633.CrossRefGoogle ScholarPubMed
Matthew, W.D., 1909, The Carnivora and Insectivora of the Bridger Basin, middle Eocene: Memoirs of the American Museum of Natural History, v. 9, p. 291567.Google Scholar
Matthew, W.D., 1915, Part IV.—Entelonychia, Primates, Insectivora (part), in Matthew, W.D., and Granger W., A Revision of the Lower Eocene Wasatch and Wind River Faunas: Bulletin of the American Museum of Natural History, v. 34, p. 429–483.Google Scholar
Matthew, W.D., 1917, A Paleocene bat: Bulletin of the American Museum of Natural History, v. 37, p. 569571.Google Scholar
Matthew, W.D., 1921, Stehlinius, a new Eocene insectivore: American Museum Novitates, v. 14, p. 15.Google Scholar
Matthew, W.D., and Granger, W., 1921, New genera of Paleocene mammals: American Museum Novitates, v. 13, p. 17.Google Scholar
McDowell, S.B. Jr., 1958, The Greater Antillean insectivores: Bulletin of the American Museum of Natural History, v. 115, p. 113214.Google Scholar
McKenna, M.C., 1960, Fossil Mammalia from the early Wasatchian Four Mile fauna, Eocene of northwest Colorado: University of California, Publications in Geological Sciences, v. 37, p. 1130.Google Scholar
McKenna, M.C., 1963, Primitive Paleocene and Eocene Apatemyidae (Mammalia, Insectivora) and the primate-insectivore boundary: American Museum Novitates, v. 2160, p. 139.Google Scholar
McKenna, M.C., 1966, Paleontology and the origin of the Primates: Folia Primatologica, v. 4, p. 125.Google Scholar
McKenna, M.C., and Bell, S.K., 1997, Classification of Mammals Above the Species Level: New York, Columbia University Press, 631 p.Google Scholar
Ni, X., Gebo, D.L., Dagosto, M., Meng, J., Tafforeau, P., Flynn, J.J., and Beard, K.C., 2013, The oldest known primate skeleton and early haplorhine evolution: Nature, v. 498, p. 6064.Google ScholarPubMed
Ni, X., Li, Q., Li, L., and Beard, K.C, 2016, Oligocene primates from China reveal divergence between African and Asian primate evolution: Science, v. 352, p. 673677.Google ScholarPubMed
Nie, W.-H., Fu, B.-Y., O'Brien, P.C.M., Wang, J.-H., Su, W.-T., Tanomtong, A., Volobouev, V., Ferguson-Smith, M.A., and Yang, F.-T., 2008, Flying lemurs—the “flying tree shrews”? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade: BMC Biology, v. 6, no. 18. https://bmcbiol.biomedcentral.com/track/pdf/10.1186/1741-7007-6-18.CrossRefGoogle ScholarPubMed
Novacek, M.J., 1986, The skull of leptictid insectivorans and the higher-level classification of Eutherian mammals: Bulletin of the American Museum of Natural History, v. 183, 111 p.Google Scholar
O'Leary, M.A., Bloch, J.I., Flynn, J.J., Gaudin, T.J., Giallombardo, A., Giannini, N.P., Goldberg, S.L., Kraatz, B.P., Luo, Z.X., Meng, J., Ni, X., Novaceck, M.J., Perini, F.A., Randall, Z.S., Rougier, G.W., Sargis, E.J., Silcox, M.T., Simmons, N.B., Spaulding, M., Velazco, P.M., Weksler, J.R., Wible, J.R., and Cirranello, A.L., 2013, The placental mammal ancestor and the post-K-Pg radiation of placentals: Science, v. 33, p. 662667.CrossRefGoogle Scholar
Olson, L.E., Sargis, E.J. and Martin, R.D., 2005, Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene: Molecular Phylogenetics and Evolution, v. 35, p. 656673.Google ScholarPubMed
Osborn, H.F., and Wortman, J.L., 1892, Fossils mammals of the Wahsatch and Wind River beds. Collection of 1891: Bulletin of the American Museum of Natural History, v. 4, p. 81147.Google Scholar
Owen, R., 1848, Description of teeth and portions of jaws of two extinct Anthracotherioid quadrupeds (Hyopotamus vectianus and Hyop. bovinus) discovered by the Marchioness of Hastings in the Eocene deposits on the NW coast of the Isle of Wight: with an attempt to develope Cuvier's idea of the Classification of Pachyderms by the number of their toes: Quarterly Journal of the Geological Society of London, v. 4, p. 103141.CrossRefGoogle Scholar
Presley, R., 1979, The primitive course of the internal carotid artery in mammals: Acta Anatomica, v. 103, p. 238244.Google ScholarPubMed
Raffles, T.S., 1821, Descriptive catalogue of a zoological collection, made on account of the honourable East India Company, in the island of Sumatra and its vicinity, under the direction of Sir Thomas Stamford Raffles, Lieutenant-Governor of Fort Marlborough; with additional notices illustrative of the natural history of those countries: Transactions of the Linnean Society of London, v. 13, p. 239274.Google Scholar
Rasband, W.S., 1997–2019, ImageJ: http://rsb.info.nih.gov/ij/.Google Scholar
Robinson, P., Gunnell, G.F., Walsh, S.L., Clyde, W.C., Storer, J.E., Stucky, R.K., Froehlich, D.J., Ferrusquia-Villafranca, I., and McKenna, M.C., 2004, Wasatchian through Duchesnean biochronology, in Woodburne, M.O., ed., Late Cretaceous and Cenozoic Mammals of North America: New York, Columbia University Press, p. 106155.Google Scholar
Rose, K. D., and Bown, T. M., 1996, A new plesiadapiform (Mammalia: Plesiadapiformes) from the early Eocene of the Bighorn Basin, Wyoming: Annals of the Carnegie Museum, v. 65, p. 305321.Google Scholar
Rose, K.D., Chew, A.E., Dunn, R.H., Kraus, M.J., Fricke, H.C., and Zack, S.P., 2012, Earliest Eocene mammalian fauna from the Paleocene–Eocene Thermal Maximum at Sand Creek Divide, Southern Bighorn Basin, Wyoming: University of Michigan Papers on Paleontology, v. 136, 122 p.Google Scholar
Russell, D.E., 1959, Le crâne de Plesiadapis: Bulletin de la Société Géologique de France, v. 4, p. 312314.CrossRefGoogle Scholar
Russell, D.E., 1964, Les mammifères Paléocène d'Europe: Mémoires du Muséum National d'Histoire Naturelle, nouvelle série, v. 13, 324 p.Google Scholar
Russell, D.E., 1981, Un primate nouveau du Paléocène supérieur de France: Géobios, v. 14, p. 399405.CrossRefGoogle Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, v. 9, p. 671675.Google ScholarPubMed
Silcox, M.T., 2001, A Phylogenetic Analysis of Plesiadapiformes and their Relationship to Euprimates and Other Archontans [Ph.D. dissertation]: Baltimore, Johns Hopkins School of Medicine, 729 p.Google Scholar
Silcox, M.T., 2003, New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography: Journal of Human Evolution, v. 44, p. 7386.Google ScholarPubMed
Silcox, M.T., 2008, The Biogeographic origins of primates and euprimates: East, West, North, or South of Eden? in Sargis, E.J., and Dagosto, M.J., eds. Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay: New York: Springer-Verlag, p. 199231.CrossRefGoogle Scholar
Silcox, M.T., and Bloch, J.I.., 2006, Upper incisor evolution in plesiadapiform primates: American Journal of Physical Anthropology, Supplement 42, p. 165.Google Scholar
Silcox, M.T., and Gunnell, G.F., 2008, Plesiadapiformes, in Janis, C.M., Gunnell, G.F., and Uhen, M.D., eds., Evolution of Tertiary Mammals of North America Volume 2: Small Mammals, Xenarthrans, and Marine Mammals: Cambridge, Cambridge University Press, p. 207238.Google Scholar
Silcox, M. T., Rose, K. D., and Walsh, S., 2002, New specimens of picromomyids (Plesiadapiformes, Primates) with description of a new species of Alveojunctus: Annals of the Carnegie Museum, v. 71, p. 111.Google Scholar
Silcox, M.T., Bloch, J.I., Boyer, D.M., Godinot, M., Ryan, T.M., Spoor, F., and Walker, A., 2009, Semicircular canal system in early primates: Journal of Human Evolution, v. 56, p. 315327.CrossRefGoogle ScholarPubMed
Silcox, M.T., Benham, A.E., and Bloch, J.I., 2010a, Endocasts of Microsyops (Microsyopidae, Primates) and the evolution of the brain in primitive primates: Journal of Human Evolution, v. 58, p. 505521.Google Scholar
Silcox, M.T., Bloch, J.I., Boyer, D.M., and Houde, P., 2010b, Cranial anatomy of Paleocene and Eocene Labidolemur kayi (Mammalia: Apatotheria) and the relationships of the Apatemyidae to other mammals: Zoological Journal of the Linnean Society, v. 160, p. 773825.Google Scholar
Silcox, M.T., Bloch, J.I., and Gunnell, G.F., 2012, Cranial anatomy of Paleogene Microsyopidae (Mammalia, Euarchonta) and its relevance to understanding euarchontan relationships: Society of Vertebrate Paleontology, 2012 Program and Abstracts, p. 172.Google Scholar
Silcox, M.T., Bloch, J.I., Boyer, D.M., Chester, S.G.B., and López-Torres, S., 2017, The evolutionary radiation of plesiadapiforms: Evolutionary Anthropology, v. 26, p. 7494.CrossRefGoogle ScholarPubMed
Simpson, G.G., 1928, A new mammalian fauna from the Fort Union of southern Montana: American Museum Novitates, v. 297, p. 115.Google Scholar
Simpson, G.G., 1929, Third contribution to the Fort Union Fauna at Bear Creek, Montana: American Museum Novitates, v. 345, p. 112.Google Scholar
Simpson, G.G., 1935, The Tiffany fauna, upper Paleocene. III. Primates, Carnivora, Condylarthra, and Amblypoda: American Museum Novitates, v. 817, p. 128.Google Scholar
Simpson, G.G., 1937, The Fort Union of the Crazy Mountain Field, Montana and its mammalian faunas: Bulletin of the United States National Museum, v. 169, p. 1287.CrossRefGoogle Scholar
Simpson, G.G., 1940, Studies on the earliest Primates: Bulletin of the American Museum of Natural History, v. 77, p. 185212.Google Scholar
Simpson, G.G., 1945, The principles of classification and a classification of mammals: Bulletin of the American Museum of Natural History, v. 85, 350 p.Google Scholar
Simpson, G.G., 1955, The Phenacolemuridae, new family of early Primates: Bulletin of the American Museum of Natural History, v. 105, p. 415441.Google Scholar
Smith, T., and Smith, R., 2003, Terrestrial mammals as biostratigraphic indicators in upper Paleocene–lower Eocene marine deposits of the southern North Sea Basin, in Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene: Boulder, Colorado, Geological Society of America Special Paper 369, p. 513520.Google Scholar
Stafford, B. J., and Szalay, F.S., 2000, Craniodental functional morphology and taxonomy of dermopterans: Journal of Mammalogy, v. 81, p. 360385.2.0.CO;2>CrossRefGoogle Scholar
Stock, C., 1934, Microsyopsinae and Hyopsodontidae in the Sespe upper Eocene, California: Proceedings of the National Academy of Science, Philadelphia, v. 20, p. 349354.Google ScholarPubMed
Swofford, D.L., 2002, PAUP: Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4.0*a165: Sunderland, Sinauer Associates. http://paup.phylosolutions.com/.Google Scholar
Szalay, F.S., 1969a, Uintasoricinae, a new subfamily of early Tertiary Mammals (?Primates): American Museum Novitates, no. 2363, p. 136.Google Scholar
Szalay, F.S., 1969b, Mixodectidae, Microsyopidae, and the insectivore-primate transition: Bulletin of the American Museum of Natural History, v. 140, p. 195330.Google Scholar
Szalay, F.S., 1972, Cranial morphology of the early Tertiary Phenacolemur and its bearing on primate phylogeny: American Journal of Physical Anthropology, v. 361, p. 5976.Google Scholar
Szalay, F.S., 1974, A new species and genus of early Eocene primate from North America: Folia Primatologica, v. 22, p. 243250.Google ScholarPubMed
Szalay, F.S., and Delson, E., 1979, Evolutionary History of the Primates: New York, Academic Press, 580 p.Google Scholar
Szalay, F.S., and Drawhorn, G., 1980, Evolution and diversification of the Archonta in an arboreal milieu, in Luckett, W.P., ed. Comparative Biology and Evolutionary Relationships of Tree Shrews: New York, Plenum Press, p. 133169.CrossRefGoogle Scholar
Szalay, F.S., Rosenberger, A.L., and Dagosto, M., 1987, Diagnosis and differentiation of the order Primates: Yearbook of Physical Anthropology, v. 30, p. 75105.CrossRefGoogle Scholar
Trouessart, E.-L., 1897, Catalogus Mammalium Tam Viventium Quam Fossilium, Tomus I: Berlin, Friedländer und Sohn, 664 p.Google Scholar
Van Valen, L.M., and Sloan, R.E., 1965, The earliest primates: Science, v. 150, p. 743745.Google ScholarPubMed
Waddell, P.J., Okada, N., and Hasegawa, M., 1999, Towards resolving the interordinal relationships of placental mammals: Systematic Biology, v. 48, p. 15.Google Scholar
Wagner, J.A., 1855, Die Säugethiere in Abbildungen Nach Der Natur: Leipzig, Weiger, 590 p.Google Scholar
White, C., Bloch, J.I., and Silcox, M.T., 2016, Virtual endocast of late Paleocene Niptomomys (Microsyopidae, Primates) and early primate brain evolution: Society of Vertebrate Paleontology, 2016 Program and Abstracts, p. 248.Google Scholar
White, T.E., 1952, Preliminary analysis of the vertebrate fossil fauna of the Boysen Reservoir area: Proceedings of the U.S. National Museum, v. 102, p. 185207.CrossRefGoogle Scholar
Wible, J.R., 1983, The internal carotid artery in early eutherians: Palaeontologica Polonica, v. 28, p. 281293.Google Scholar
Wible, J.R., 1987, The eutherian stapedial artery: character analysis and implications for superordinal relationships: Zoological Journal of the Linnean Soceity, v. 91, p. 107135.Google Scholar
Wible, J.R., 1993, Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia): American Museum Novitates, v. 3072, p. 127.Google Scholar
Wible, J.R., 2008, On the cranial osteology of the Hispaniolan solenodon, Solenodon paradoxus Brandt, 1833 (Mammalia, Lipotyphla, Solenodontidae): Annals of the Carnegie Museum, v. 77, p. 321402.Google Scholar
Wible, J.R., 2011, On the treeshrew skull (Mammalia, Placentalia, Scandentia): Annals of the Carnegie Museum, v. 79, p. 149230.CrossRefGoogle Scholar
Wible, J.R., and Covert, H.H., 1987, Primates: cladistic diagnosis and relationships: Journal of Human Evolution, v. 16, p. 122.CrossRefGoogle Scholar
Wible, J.R., and Gaudin, T.J., 2004, On the cranial osteology of the yellow armadillo Euphractus sexcinctus (Dasypodidae, Xenarthra, Placentalia): Annals of Carnegie Museum, v. 73, p. 117196.Google Scholar
Wible, J.R, and Martin, J.R., 1993, Ontogeny of the tympanic floor and roof in archontans, in MacPhee, R.D.E., ed., Primates and Their Relatives in Phylogenetic Perspective: New York, Plenum Press, p. 111146.CrossRefGoogle Scholar
Wible, J.R., Novacek, M.J., and Rougier, G.W., 2004, New data on the skull and dentition in the Mongolian Late Cretaceous eutherian mammal Zalambdalestes: Bulletin of the American Museum of Natural History, v. 2004, p. 1144.2.0.CO;2>CrossRefGoogle Scholar
Wilson, R.W., and Szalay, F.S., 1972, New paromomyid primate from middle Paleocene beds, Kutz Canyon area, San Juan Basin, New Mexico: American Museum Novitates, v. 2499, p. 118.Google Scholar
Woodburne, M.O., ed., 2004, Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology: New York, Columbia University Press, 391 p.CrossRefGoogle Scholar