Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-18T19:56:29.241Z Has data issue: false hasContentIssue false

Comparative paleoecology of Cambrian trilobite extinctions

Published online by Cambridge University Press:  20 May 2016

Stephen R. Westrop
Affiliation:
Oklahoma Museum of Natural History and School of Geology and Geophysics, University of Oklahoma, Norman 73019
Michael B. Cuggy
Affiliation:
School of Geography and Geology, McMaster University, Hamilton, Ontario L8S 4L8, Canada

Abstract

Analysis of 164 collections from shelf facies of Laurentian North America indicates that three successive trilobite mass extinctions at Late Cambrian stage boundary intervals (“biomere” boundaries) are characterized by a common pattern of change in distributional paleoecology and species diversity. In all cases, the extinction intervals are marked by a shift to biofacies that have broader environmental distributions than those prior to the onset of extinctions, implying a reduction in between-habitat (beta) diversity. Significant declines in within-habitat (alpha) diversity also characterize each extinction and the compositions of shelf biofacies record extensive immigration of taxa from off-shelf and shelf-margin sites. The nature and extent of ecologic disruption of the shelf appears to be comparable to changes associated with major mass extinctions, such as those at the end of the Ordovician and Permian. Unlike major mass extinctions, the Cambrian events are followed by a complete recovery of diversity and biofacies structure within a few million years.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bennington, J. B., and Bambach, R. K. 1996. Statistical testing of paleocommunity recurrence: are similar fossil assemblages ever the same? Palaeogeography, Palaeoclimatology, Palaeoecology, 127:107133.Google Scholar
Berg, R. R. 1953. Franconian trilobites from Minnesota and Wisconsin. Journal of Paleontology, 27:553568.Google Scholar
Blob, R. W., and Fiorillo, A. R. 1996. The significance of vertebrate microfossil size and shape distributions for faunal abundance reconstructions: a Late Cretaceous example. Paleobiology, 22:422435.Google Scholar
Bottjer, D. J., Schubert, J. K., and Droser, M. L. 1996. Comparative evolutionary palaeoecology: assessing the changing ecology of the past, p. 113. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Geological Society Special Publication 102.Google Scholar
Davidek, K., Landing, E., Bowring, S. A., Westrop, S. R., Rushton, A. W. A., Fortey, R. A., and Adrain, J. M. 1998. New Uppermost Cambrian U-Pb date from Avalonian Wales and the age of the Cambrian-Ordovician boundary. Geological Magazine, 135:305309.Google Scholar
Eby, R. G. 1981. Early Late Cambrian trilobite faunas of the Big Horse Limestone and correlative units in central Utah and Nevada. , , 613 p.Google Scholar
Elias, R. J., and Young, G. A. 1998. Coral diversity, ecology and provincial structure during a time of crisis: the Latest Ordovician to Earliest Silurian Edgewood Province in Laurentia. Palaios, 13:98112.Google Scholar
Fritz, W. H. 1975. Appendix, fossil identifications, p. 6873. In Cook, D. G. (ed.), Structural Style Influenced by Lithofacies, Rocky Mountain Main Ranges, Alberta-British Columbia. Geological Survey of Canada Bulletin 233.Google Scholar
Grant, R. E. 1962. Trilobite distribution, Upper Franconia Formation (Upper Cambrian), south-eastern Minnesota. Journal of Paleontology, 36:965998.Google Scholar
Hintze, L. F., Taylor, M. E., and Miller, J. F. 1988. Upper Cambrian-Lower Ordovician Notch Peak Formation in western Utah. U.S. Geological Survey Professional Paper 1393, 30 p.Google Scholar
Hughes, N. C. 1993. Distribution, taphonomy and functional morphology of the Upper Cambrian trilobite Dikelocephalus. Milwaukee Public Museum Contributions in Biology and Geology, 84:149.Google Scholar
Hughes, N. C., and Hesslbo, S. P. 1997. Stratigraphy and sedimentology of the St. Lawrence Formation, Upper Cambrian of the northern Mississippi Valley. Milwaukee Public Museum Contributions in Biology and Geology, 91:150.Google Scholar
Jablonski, D. 1986. Causes and consequences of mass extinctions: A comparative approach, p. 183229. In Elliott, D. K. (ed.), Dynamics of Extinction. John Wiley & Sons, New York.Google Scholar
James, N. P., and Stevens, R. K. 1986. Stratigraphy and correlation of the Cambro-Ordovician Cow Head Group, western Newfoundland. Geological Survey of Canada Bulletin 366:1143.Google Scholar
Loch, J. D., Stitt, J. H., and Derby, J. R. 1993. Cambrian-Ordovician boundary extinctions: implications of revised trilobite and brachiopod data from Mount Wilson, Alberta, Canada. Journal of Paleontology, 67:497517.Google Scholar
Longacre, S. A. 1970. Trilobites of the Upper Cambrian Ptychaspid Biomere, Wilberns Formation, central Texas. Paleontological Society Memoir 4:170.Google Scholar
Ludvigsen, R. 1982. Upper Cambrian and Lower Ordovician trilobite biostratigraphy of the Rabbitkettle Formation, western District of Mackenzie. Royal Ontario Museum Life Sciences Contributions 134:1188.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1983a. Trilobite biofacies of the Cambrian-Ordovician boundary interval in northern North America. Alcheringa 7:301319.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1983b. Franconian trilobites of New York State. New York State Museum Memoir 23:183.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1985. Three new Upper Cambrian stages for North America. Geology, 13:139143.Google Scholar
Mikulic, D. G. 1990. The arthropod fossil record: biologic and taphonomic controls on its composition, p. 123. In Culver, S. J. (ed.), Arthropod Paleobiology. Short Courses in Paleontology number 3.Google Scholar
Nelson, C. A. 1951. Cambrian trilobites from the St. Croix valley. Journal of Paleontology, 25:765784.Google Scholar
Öpik, A. A. 1967. The Mindyallan fauna of north-western Queensland. Australian Bureau of Mineral Resources, Geology and Geophysics, Bulletin 74:1404.Google Scholar
Palmer, A. R. 1962. Glyptagnostus and associated trilobites in the United States. U.S. Geological Survey Professional Paper 374F, 49 p.Google Scholar
Palmer, A. R. 1965. Biomere—a new kind of biostratigraphic unit. Journal of Paleontology, 39:149153.Google Scholar
Palmer, A. R. 1984. The biomere problem: Evolution of an idea. Journal of Paleontology, 58:599611.Google Scholar
Palmer, A. R. 1998. A proposed nomenclature for stages and series for the Cambrian of Laurentia. Canadian Journal of Earth Sciences, 35:323328.Google Scholar
Pratt, B. R. 1992. Trilobites of the Marjuman and Steptoean stages (Upper Cambrian), Rabbitkettle Formation, southern Mackenzie Mountains, northwest Canada. Palaeontographica Canadiana, 9:1179.Google Scholar
Rasetti, F. 1944. Upper Cambrian trilobites from the Levis Conglomerate. Journal of Paleontology, 18:229258Google Scholar
Rasetti, F. 1945. New Upper Cambrian trilobites from the Levis Conglomerate. Journal of Paleontology, 19:462478.Google Scholar
Rasetti, F. 1963. Additions to the Upper Cambrian fauna from the conglomerate boulders at Levis. Journal of Paleontology, 37:10091017.Google Scholar
Raymond, P. E. 1924. New Upper Cambrian and Lower Ordovician trilobites from Vermont. Proceedings of the Boston Society of Natural History, 37:389446.Google Scholar
Raymond, P. E. 1937. New Upper Cambrian and Lower Ordovician Trilobita and Ostracoda from Vermont. Geological Society of America Bulletin, 48:10791146.Google Scholar
Sanders, H. L. 1968. Benthic marine diversity: a comparative study. American Naturalist, 102:243282.Google Scholar
Schubert, J. K., and Bottjer, D. J. 1995. Aftermath of the Permian-Triassic mass-extinction event: paleoecology of Lower Triassic carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116:139.Google Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.Google Scholar
Sheehan, P. M. 1996. A new look at Ecological Evolutionary Units (EEUs). Palaeogeography, Palaeoclimatology, Palaeoecology, 127:2132.Google Scholar
Springer, D. A., and Bambach, R. K. 1985. Gradient versus cluster analysis of fossil assemblages: a comparison from the Ordovician of southwestern Virginia. Lethaia, 18:181272.Google Scholar
SPSS. 1994. SPSS version 6.1 for the Macintosh. SPSS Inc., Chicago, Illinois.Google Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman, San Francisco, 332 p.Google Scholar
Statview. 1995. Statview version 4.5. Abacus Concepts Inc., Berkeley, CaliforniaGoogle Scholar
Stitt, J. H., 1971. Late Cambrian and earliest Ordovician trilobites, Timbered Hills and lower Arbuckle Groups, western Arbuckle Mountains, Murray County, Oklahoma. Oklahoma Geologic Survey Bulletin, 110:183.Google Scholar
Stitt, J. H., 1977. Late Cambrian and earliest Ordovician trilobites, Wichita Mountains area, Oklahoma. Oklahoma Geological Survey Bulletin, 124:179.Google Scholar
Stitt, J. H., 1983. Trilobites, biostratigraphy and lithostratigraphy of the McKenzie Hill Limestone (Lower Ordovician), Wichita and Arbuckle Mountains, Oklahoma. Oklahoma Geological Survey Bulletin, 134:154.Google Scholar
Westrop, S. R. 1984. Late Cambrian and basal Ordovician trilobites, southern Canadian Rocky Mountains, Alberta. , , 990 p.Google Scholar
Westrop, S. R. 1986a. Trilobites of the Upper Cambrian Sunwaptan Stage, southern Canadian Rocky Mountains, Alberta. Palaeontographica Canadiana 3:1179.Google Scholar
Westrop, S. R. 1986b. Taphonomic versus ecologic controls on taxonomic relative abundance patterns in tempestites. Lethaia, 19:123132.Google Scholar
Westrop, S. R. 1989. Facies anatomy of an Upper Cambrian Grand Cycle: Bison Creek and Mistaya formations, southern Alberta. Canadian Journal of Earth Sciences, 26:22922304.Google Scholar
Westrop, S. R. 1992. Upper Cambrian (Marjuman-Steptoean) trilobites from the Port au Port Group, western Newfoundland. Journal of Paleontology, 66:228255.Google Scholar
Westrop, S. R. 1995. Sunwaptan (Upper Cambrian) trilobites of the Rabbitkettle Formation, Mountain River region, northern Mackenzie Mountains, northwest Canada. Palaeontographica Canadiana, 12:175.Google Scholar
Westrop, S. R. 1996. Temporal persistence and stability of Cambrian biofacies: Sunwaptan (Upper Cambrian) trilobite faunas of North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:3346.Google Scholar
Westrop, S. R., and Adrain, J. M. 1998. Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology, 24:116.Google Scholar
Westrop, S. R., and Ludvigsen, R. 1987. Biogeographic control of trilobite mass extinction at an Upper Cambrian “biomere” boundary. Paleobiology, 13:8499.Google Scholar
Westrop, S. R., Knox, L. A., and Landing, E. 1993. Lower Ordovician (Ibexian) trilobites from the Tribes Hill Formation, central Mohawk Valley, New York State. Canadian Journal of Earth Sciences, 30:16181633.Google Scholar
Wilson, J. L., and Frederickson, E. A. 1950. The Irvingella major (“Ptychopleurites“) faunizone of the Upper Cambrian. American Journal of Science, 248:891902.Google Scholar
Winston, D., and Nicholls, H. E. 1967. Late Cambrian and Early Ordovician faunas from the Wilberns Formation of central Texas. Journal of Paleontology, 41:6696.Google Scholar