Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T12:23:54.595Z Has data issue: false hasContentIssue false

Commensal borings from the Middle Devonian of central New York: ecologic and taxonomic review of Clionoides, Clionolithes, and Canaliparva n. ichnogen

Published online by Cambridge University Press:  14 July 2015

Carolyn M. Furlong
Affiliation:
Geology Department, State University of New York College at Cortland, P.O. Box 2000, Cortland, NY 13045, USA Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta CANADA T6G 2E3,
Christopher A. McRoberts
Affiliation:
Geology Department, State University of New York College at Cortland, P.O. Box 2000, Cortland, NY 13045, USA

Abstract

The examination of 730 borings within 88 brachiopod hosts form the Middle Devonian of central New York State revealed four ichnospecies belonging to three ichnogenera that have taxonomic histories riddled with confusion, controversy and contradiction. New observations of the ichnotaxa question long-held views of a simple morphologic differentiation between sponge borings and worm borings. Clionoides Fenton and Fenton, 1932 is here considered a sponge boring, which is comprised of a complex, multi-dimensional system of tunnels, shafts, canals, microterraced bowl-shaped structures and cone extensions, and is a senior synonym of Paleosabella (McCoy 1855) and Vermiforichnus Cameron, 1969a. Clionolithes Clarke, 1908 is a sponge boring possessing a rosette, branching network extending from a central node and is a senior synonym of Nododendrina Vogel et al., 1987 and Ramodendrina Vogel et al., 1987. The creation of Canaliparva circularis n. ichnogen. n. ichnosp. is needed to accommodate simple, vertically oriented, U-shaped tunnels that are indicative of worm activity. Paleoecologic evidence supports a commensal relationship between the endoliths and hosts based upon boring site frequencies in the hosts, boring patterns and five inter-specific co-occurrences between traces. These new data suggest greater diversity and ecologic complexity in ichnofaunal paleocommunities from the Middle Devonian than previously recognized.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ager, D. V. 1961. The epifauna of a Devonian spiriferid. The Quarterly Journal of the Geological Society of London, 117:110.CrossRefGoogle Scholar
Bailey, J. B. 1983. Middle Devonian Bivalvia from the Solsville Member (Marcellus Formation), central New York State. American Museum of Natural History Bulletin, 174:193325.Google Scholar
Bertling, M. 2007. What's in a name? Nomenclature, Systematics, Ichnotaxonomy, p. 8191. In Miller, W. (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam.CrossRefGoogle Scholar
Bertling, M., Braddy, S. J., Bromley, R. G., Demathieu, G. R., Genise, J., Mikulas, R., Nielsen, J. K., Nielsen, K. S. S., Rindsberg, A. K., Schlirf, M., and Uchman, A. 2006. Names for trace fossils: a uniform approach. Lethaia, 39:265286.CrossRefGoogle Scholar
Blake, J. A. and Evans, J. W. 1973. Polydora and related genera as borers in mollusk shells and other calcareous substrates. The Veliger, 15:235249.Google Scholar
Brett, C. E and Baird, G. C. 1996. Middle Devonian sedimentary cycles and sequences in the northern Appalachian basin, p. 213241. In Witzke, B. J., Ludvigson, G. A. and Day, J. (eds.), Paleozoic Sequence Stratigraphy. Geological Society of America Special Paper, 306.Google Scholar
Brett, C. E. and Cottrell, J. F. 1982. Substrate specificity in the Devonian tabulate coral Pleurodictyum . Lethaia, 15:247262.CrossRefGoogle Scholar
Bromley, R. G. 1972. On some ichnotaxa in hard substrates with a redefinition of Trypenites Mägdefrau. Paläontologische Zeitschrift, 46:9398.CrossRefGoogle Scholar
Bromley, R. G. 2004. A stratigraphy of marine bioerosion, p. 455479. In McIlroy, D. (ed.), The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society, London.Google Scholar
Bronn, H. G. 1837. Lethaea geognostica, 2: Das Kreide und Molassen–Gebirge. Stuttgart, p. 5451,350.Google Scholar
Brower, J. C. and Nye, O. B. 1991. Quantitative analysis of paleocommunities in the lower part of the Hamilton Group near Cazenovia, New York, p. 3774. In Landing, E. and Brett, C. E. (eds.), Dynamic Stratigraphy and Depositional Environments oh the Hamilton Group (Middle Devonian) in New York State, Part 2. New York State Museum Bulletin 469.Google Scholar
Calcinai, B., Bavestrello, G., Cerrano, C., and Gaggero, L. 2008. Substratum microtexture affects the boring pattern of Cliona albimarginata (Clionoaidae, Demospongiae), p. 203211. In Wisshak, M. and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
Cameron, B. 1967. Fossilization of an ancient (Devonian) soft-body worm. Science, 155:1,2461,248.CrossRefGoogle Scholar
Cameron, B. 1968. Commensalism of new serpulid worm from the Hamilton Group (Middle Devonian) of New York. Journal of Paleontology, 42:850852.Google Scholar
Cameron, B. 1969a. New name for Palaeosabella prisca (McCoy), a Devonian worm-boring, and its preserved probable borer. Journal of Paleontology, 43:189192.Google Scholar
Cameron, B. 1969b. Paleozoic shell-boring annelids and their trace fossils. American Zoologist, 9:689703.CrossRefGoogle Scholar
Carter, J. G. and Tevesz, M. J. S. 1978. Shell microstructure of a Middle Devonian (Hamilton Group) bivalve fauna from central New York. Journal of Paleontology, 52:859890.Google Scholar
Clarke, J. M. 1908. The beginnings of dependent life. New York State Museum Bulletin, 121:146196.Google Scholar
Clarke, J. M. 1921. Organic dependence and disease: Their origin and significance. New York Museum Bulletin, 221–222:1113.CrossRefGoogle Scholar
Cobb, W. R. 1969. Penetration of calcium carbonate substrates by the boring sponge, Cliona . American Zoologist, 9:783790.CrossRefGoogle Scholar
Cobb, W. R. 1975. Fine structural features of destruction of calcareous substrates by the Cliona celata . Transactions of the American Microscopial Society, 94:197202.CrossRefGoogle Scholar
Conrad, T. A. 1841. Fifth annual report on the paleontology of the state of New York. New York Geological Survey, Annual Report 5:2557.Google Scholar
Cooper, G. A. 1930. Stratigraphy of the Hamilton Group of New York. American Journal of Science, 5th Series, 19:116134, 214–236.CrossRefGoogle Scholar
Cooper, G. A., 1941. New Devonian stratigraphic units. Washington Academy of Sciences Journal, 31:179181.Google Scholar
Eaton, A. 1831. Geological equivalents. The American Journal of Science and Arts, 21:132138.Google Scholar
Ettensohn, F. R. 1985. The Catskill Delta complex and the Acadian Orogeny: a model, p. 3949. In Woodrow, D. L., Sevon, W. D. (eds.), The Catskill Delta. Geological Society of America Special Paper 201.CrossRefGoogle Scholar
Fenton, C. L. and Fenton, M. A. 1932. Boring sponges in the Devonian of Iowa. American Midland Naturalist, 13:4261.CrossRefGoogle Scholar
Frey, R. W. and Seilacher, A. 1980. Uniformity in marine invertebrate ichnology. Lethaia, 13:183207.CrossRefGoogle Scholar
Futterer, D. K. 1974. Significance of the boring sponge Cliona for the origin of fine grained material of carbonate sediments. Journal of Sedimentary Research, 44:7984.Google Scholar
Galtsoff, P. S. 1964. The American Oyster Crassostrea virginica Gmelin. The Bulletin of the United States Fishery Commission, 64:1480.Google Scholar
Glaub, I. and Vogel, K. 2004. The stratigraphic record of microborings. Fossils and Strata, 51:126135.CrossRefGoogle Scholar
Glaub, I., Golubic, S., Gektidis, M., Radtke, G., and Vogel, K. 2007. Microborings and microbial endoliths: geological implications, p. 368381. In Miller, W. (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam.CrossRefGoogle Scholar
Grasso, T. X., Brett, C. E., and Baird, G. C. 1985. Revised upper Marcellus (Middle Devonian) correlations in the Chenango Valley region: Central New York. Geological Society of America Abstracts with Programs, 17 (l):21.Google Scholar
Hall, J. 1860. Observations on Brachiopoda. New York State Cabinet of Natural History, 13th Annual Report, Albany, p. 6575.Google Scholar
Hall, J. 1867. Containing descriptions and figures of the fossil brachiopoda of the Upper Helderburg, Hamilton, Portage and Chemung Groups. New York Geological Survey, Palaeontology, 4:1422.Google Scholar
Hall, J. 1874. Description of bryozoa and corals from the Lower Helderberg Group. Twenty–sixth Annual Report of the New York State Museum of Natural History 1874, p. 93115.Google Scholar
Hoare, R. D. and Steller, D. L. 1967. A Devonian brachiopod with epifauna. The Ohio Journal of Science, 67:291297.Google Scholar
Hoare, R. D. and Walden, R. L. 1983. Vermiforichnus (Polychaete) boring in Paraspirifer bownockeri (Brachiopoda: Devonian). Ohio Journal of Science, 83:114119.Google Scholar
Kelly, S. R. A. and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27:793807.Google Scholar
Kesling, R. V., Hoare, R. D., and Sparks, D. K. 1980. Epizoans of the Middle Devonian brachiopod Paraspirifer bownockeri: their relationships to one another and to their host. Journal of Paleontology, 54:1,1411,154.Google Scholar
Kobluk, D. R., James, N. P., and Pemberton, S. G. 1978. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the lower Paleozoic. Paleobiology, 4:163170.CrossRefGoogle Scholar
Mägdefrau, M. G. 1932. Über einige Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläontologische Zeitschrift, 4:150160.CrossRefGoogle Scholar
McCoy, F. 1855. A systematic description of the British Palaeozoic fossils in the Geological Museum of University of Cambridge, p. 185406. In Sedgwick, A. (ed.), A Synopsis of the Classification of the British Palaeozoic Rocks. J. W. Parker, London, Cambridge.Google Scholar
Palmer, T. J. and Palmer, C. D. 1977. Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia, 10:179199.CrossRefGoogle Scholar
Pemberton, S. G., Kobluk, D. R., Yeo, R. K., and Risk, M. J. 1980. The boring Trypanites at the Silurian–Devonian disconformity in southern Ontario. Journal of Paleontology, 54:1,2581,266.Google Scholar
Pickerill, R. K. 1976. Vermiforichnus borings from the Ordovician of Central Wales. Geological Magazine. 113:159164.CrossRefGoogle Scholar
Pickerill, R. K., and Harland, T. L. 1984. Middle Ordovician microborings of probable sponge origin from eastern Canada and southern Norway. Journal of Paleontology, 58:885891.Google Scholar
Plewes, C. R. 1996. Ichnotaxonomic studies of Jurassic endoliths. Ph.D. Thesis, Institute of Earth Studies, University of Wales, Aberystwyth, 313 p.Google Scholar
Pohowsky, R. A. 1978. The boring ctenostomate bryozoa: taxonomy and paleobiology based on cavities in calcareous substrata. Bulletins of American Paleontology, 73:1185.Google Scholar
Rickard, L. V. 1975. Correlation of the Silurian and Devonian rocks in New York State. New York State Museum and Science Service Map and Chart Series, 24:116 +pls. 11–14.Google Scholar
Rollins, H. B., Eldredge, N., and Spiller, J. 1971. Gastropoda and Monoplacophora of the Solsville Member (Middle Devonian) Marcellus Formation in the Chenango Valley, New York State. American Museum of Natural History Bulletin, 144:129170.Google Scholar
Ross, R. M., McRoberts, C. A., and Duggan–Haas, D. 2007. Creating a virtual fieldwork experience at a fossil–rich quarry, p. 177187. In McRoberts, C. A. (ed.), 2007 Field Trip Guidebook. New York State Geological Association 79th Annual Meeting.Google Scholar
Rosso, A. 2008. Leptichnus tortus isp. nov., a new cheilostome etching and comments on other bryozoan–produced trace fossils. Studi Trentini di Scienze Naturali, Acta Geologica, 83:7585.Google Scholar
Sparks, D. K., Hoare, R. D., and Kesling, R. V. 1980. Epizoans on the brachiopod Paraspirifer bownockeri (Stewart) from the Middle Devonian of Ohio. University of Michigan Paleontology Museum, Papers on Paleontology, 23:1105.Google Scholar
Stephenson, L. W. 1952. Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. U.S. Geological Survey Professional Paper, 242:1226.Google Scholar
Stewart, G. A. 1927. Fauna of the Silica Shale of Lucas County. Ohio Geological Survey Bulletin, 32:176.Google Scholar
Tapanila, L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia, 38:8999.CrossRefGoogle Scholar
Tapanila, L. 2006. Devonian Entobia borings from Nevada, with a revision on Topsentopsis . Journal of Paleontology, 80:760767.CrossRefGoogle Scholar
Tapanila, L. 2008. The medium is the message: imaging a complex microboring (Pyrodendrina cupra igen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada, p. 123145. In Wisshak, M. and Tapanila, L. (eds.), Current Developments in Bioerosion. Erlangen Earth Conference Series. Springer-Verlag Berlin Heidelberg.CrossRefGoogle Scholar
Tapanila, L., Copper, P., and Edinger, E. 2004. Environmental and substrate control on Paleozoic bioerosion in corals and stromatoporoids, Anticosti Island, Eastern Canada. Palaios, 19:292306.2.0.CO;2>CrossRefGoogle Scholar
Taylor, P. D. and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth Science Reviews, 62:1103.CrossRefGoogle Scholar
Taylor, P. D., Wilson, M. A., and Bromley, R. G. 1999. A new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology, 42:595604.CrossRefGoogle Scholar
Taylor, P. D., Wilson, M. A., and Bromley, R. G. 2012. Finichnus, a new name for the ichnogenus Leptichnus Taylor, Wilson and Bromley, 1999, preoccupied by Leptichnus simroth 1896 (Mollusca, Gastropoda). Paleontology, 56:111.Google Scholar
Teichert, C. 1945. Parasitic worms in Permian brachiopod and pelecypod shells in Western Australia. American Journal of Science, 243:197209.CrossRefGoogle Scholar
Thayer, C. W. 1974. Substrate specificity of Devonian epizoa. Journal of Paleontology, 48:881894.Google Scholar
Ver Straeten, C. A. and Brett, C. E. 2006. Pragian to Eifelian Strata (mid Lower to lower Middle Devonian), Northern Appalachian Basin—A Stratigraphic Revision. Northeastern Geology, 28:8095.Google Scholar
Vogel, K. and Brett, C. E. 2009. Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region U.S.A.: the early history of light-related microendolithic zonation. Palaeogeography, Palaeoclimatology, Palaeoecology, 281:124.CrossRefGoogle Scholar
Vogel, K., Golubic, S., and Brett, C. E. 1987. Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, U.S.A. Lethaia, 20:263290.CrossRefGoogle Scholar
Voigt, E. 1965. Über parasitiche Polychaeten in Kredie-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift, 39:193211.CrossRefGoogle Scholar
von Hagenow, F. 1840. Monographie der Rügenschen Kreide-Versteiner ungen, 11, Abt. Radiarien und Annulaten. Neues Jahrbuch für Mineralogia, Geognosie, Geologie, Petrefaktenkd, 1840:631672.Google Scholar
Webster, C. L. 1921. Notes on the genus Atrypa, with description of new species. American Midland Naturalist, 7:1320.CrossRefGoogle Scholar
Wilson, M. A. 2007. Macroborings and the evolution of marine bioerosion, p. 356367. In Miller, W. (ed.), Trace Fossils: Concepts, Problems, Prospects. Elsevier, Amsterdam.CrossRefGoogle Scholar
Wilson, M. A. and Palmer, T. J. 2006. Patterns and Processes in the Ordovician Bioerosion Revolution. Ichnos, 13:109112.CrossRefGoogle Scholar