Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T12:22:10.343Z Has data issue: false hasContentIssue false

Codium-like taxa from the Silurian of North America: morphology, taxonomy, paleoecology, and phylogenetic affinity

Published online by Cambridge University Press:  29 October 2020

Steven T. LoDuca
Affiliation:
Department of Geography and Geology, Eastern Michigan University, Ypsilanti, Michigan 48197, USA ,
Anthony L. Swinehart
Affiliation:
Department of Biology, Hillsdale College, Hillsdale, Michigan 49242, USA
Matthew A. LeRoy
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Denis K. Tetreault
Affiliation:
Department of Earth and Environmental Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
Shawn Steckenfinger
Affiliation:
Department of Geography and Geology, Eastern Michigan University, Ypsilanti, Michigan 48197, USA ,

Abstract

A 1901 report by the Smithsonian Custodian of Paleozoic Plants noted that the nonbiomineralized taxa Buthotrephis divaricata White, 1901, B. newlini White, 1901, and B. lesquereuxi Grote and Pitt, 1876, from the upper Silurian of the Great Lakes area, shared key characteristics in common with the extant green macroalga Codium. A detailed reexamination of these Codium-like taxa and similar forms from the lower Silurian of Ontario, New York, and Michigan, including newly collected material of Thalassocystis striata Taggart and Parker, 1976, aided by scanning electron microscopy and stable carbon isotope analysis, provides new data in support of an algal affinity. Crucially, as with Codium, the originally cylindrical axes of all of these taxa consist of a complex internal array of tubes divided into distinct medullary and cortical regions, the medullary tubes being arranged in a manner similar to those of living Pseudocodium. In view of these findings, the three study taxa originally assigned to Buthotrephis, together with Chondrites verus Ruedemann, 1925, are transferred to the new algal taxon Inocladus new genus, thereby establishing Inocladus lesquereuxi new combination, Inocladus newlini new comb., Inocladus divaricata new comb., and Inocladus verus new comb. Morphological and paleoecological data point to a phylogenetic affinity for Inocladus n. gen. and Thalassocystis within the Codium-bearing green algal order Bryopsidales, but perhaps nested within an extinct lineage. Collectively, this material fits within a large-scale pattern of major macroalgal morphological diversification initiated in concert with the Great Ordovician Biodiversification Event and apparently driven by a marked escalation in grazing pressure.

UUID: http://zoobank.org/97c5c737-b291-41a2-aceb-f398cac9537a

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassler, R.S., 1915, Bibliographic index of American Ordovician and Silurian fossils: United States National Museum Bulletin, v. 92, 718 p.Google Scholar
Berger, S., and Kaever, M.J., 1992, Dasycladales: An Illustrated Monograph of a Fascinating Algal Order: Stuttgart, Georg Thieme, 247 p.Google Scholar
Boyd, D.W., 2007, Morphology and diagenesis of Dimorphosiphon talbotorum n. sp., an Ordovician skeleton-building alga (Chlorophyta: Dimorphosiphonaceae): Journal of Paleontology, v. 81, p. 18.CrossRefGoogle Scholar
Bykova, N., LoDuca, S.T., Ye, Q., Marusin, V., Grazhdankin, D., and Xiao, S., 2020, Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae: Precambrian Research. doi:10.1016/j.precamres.2020.105875.CrossRefGoogle Scholar
Ciurca, S.J. Jr., 2010, Eurypterids Illustrated: The Search for Prehistoric Sea Scorpions: Rochester, New York, PaleoResearch, 30 p.Google Scholar
Cumings, E.A., 1929, Lists of species from the New Corydon, Kokomo, and Kenneth formations of Indiana, and from reefs in the Mississinewa and Liston Creek formations: Indiana Academy of Science Proceedings, v. 39, p. 204211.Google Scholar
Cumings, E.R, and Shrock, R.R., 1928, The geology of the Silurian rocks of northern Indiana: Indiana Department of Conservation Publication 75, 227 p.Google Scholar
D'Amours, O., and Scheibling, R.E., 2007, Effect of wave exposure on morphology, attachment strength and survival of the invasive green alga Codium fragile ssp. tomentosoides: Journal of Experimental Marine Biology and Ecology, v. 351, p. 129142.CrossRefGoogle Scholar
Dawes, C.J., and Barilotti, D.C., 1959, Cytoplasmic organization and rhythmic streaming in growing blades of Caulerpa prolifera: American Journal of Botany, v. 56, p. 815.CrossRefGoogle Scholar
Dawes, C.J., and Mathieson, A.C., 2008, The Seaweeds of Florida: Gainesville, University Press of Florida, 591 p.Google Scholar
De Clerck, O., Verbruggen, H., Huisman, J.M., Faye, E.J., Leliaert, F., Schils, T., and Coppejans, E., 2008, Systematics and biogeography of the genus Pseudocodium (Bryopsidales, Chlorophyta), including the description of P. natalense sp. nov. from South Africa: Phycologia, v. 47, p. 225235.CrossRefGoogle Scholar
Del Cortona, A., Jackson, C.J., Bucchini, F., Van Bel, M., D'hondt, S., Škaloud, P., Delwiche, C.F., Knoll, A.H., Raven, J.A., Verbruggen, H., Vandepoele, K., De Clerck, O., and Leliaert, F., 2020, Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds: Proceedings of the National Academy of Sciences, v. 117, p. 25512559.CrossRefGoogle ScholarPubMed
Douglas, J.G., 1983, A new late Silurian thallophyte from central Victoria: Proceedings of the Royal Society of Victoria, v. 95, p. 275277.Google Scholar
Douglas, J.G., and Jell, P.A., 1985, Two thalloid (probably algal) species from the Early Devonian of central Victoria: Proceedings of the Royal Society of Victoria, v. 97, p. 157162.Google Scholar
Drew, E.A., and Abel, K.M., 1990, Studies on Halimeda III. A daily cycle of chloroplast migration within segments: Botanica Marina, v. 33, p. 3145.CrossRefGoogle Scholar
Drew, E.A., and Abel, K.M., 1992, Studies on Halimeda IV. An endogenous rhythm of chloroplast migration in the siphonous green alga, H. distorta: Journal of Interdisciplinary Cycle Research, v. 23, p. 128236.CrossRefGoogle Scholar
Edwards, D., 1977, A new non-calcified alga from the upper Silurian of mid Wales: Palaeontology, v. 20, p. 823832.Google Scholar
Edwards, D., Banks, H.P., Ciurca, S.J., and Laub, R.S., 2004, New Silurian cooksonias from dolostones of north-eastern North America: Botanical Journal of the Linnean Society, v. 146, p. 399413.CrossRefGoogle Scholar
Ehlers, G.M., 1973, Stratigraphy of the Niagaran Series of the northern peninsula of Michigan: University of Michigan Museum of Paleontology Papers on Paleontology, v. 3, p. 1200.Google Scholar
Elliott, G.F., 1972, Lower Paleozoic Green Algae from southern Scotland and their evolutionary significance: Bulletin of the British Museum (Natural History) Geology, v. 22, p. 355376.Google Scholar
Foerste, A.F., 1923, Notes on Medinan, Niagaran, and Chester fossils: Denison University Bulletin, v. 20, p. 37120.Google Scholar
Fry, W.L., 1983, An algal flora from the Upper Ordovician of the Lake Winnipeg region, Manitoba, Canada: Review of Palaeobotany and Palynology, v. 39, p. 313341.CrossRefGoogle Scholar
Fry, W.L., and Banks, H.P., 1955, Three new genera of Algae from the Upper Devonian of New York: Journal of Paleontology, v. 29, p. 3744.Google Scholar
Gagnon, K., McKindsey, C.W., and Johnson, L.E., 2011, Dispersal potential of invasive algae: the determinants of buoyancy in Codium fragile ssp. fragile: Marine Biology, v. 158, p. 24492458.CrossRefGoogle Scholar
Grabau, A.W., 1901, Guide to the geology and paleontology of Niagara Falls and vicinity: Bulletin of the Buffalo Society of Natural Sciences, v. 7, 284 p.Google Scholar
Grote, A.B., and Pitt, W.H., 1876, A new marine Fucoid from the Water Lime Group: Bulletin of the Buffalo Society of Natural Sciences, v. 3, p. 88.Google Scholar
Hall, J., 1847, Palaeontology of New York, Volume 1: Containing Descriptions of the Organic Remains of the Lower Division of the New-York System (Equivalent to the Lower Silurian Rocks of Europe): Albany, C. van Benthuysen, 338 p.Google Scholar
Hall, J., 1852, Palaeontology of New York, Volume 2: Containing Descriptions of the Organic Remains of the Lower Middle Division of the New-York System (Equivalent in part to the Middle Silurian Rocks of Europe): Albany, C. van Benthuysen, 362 p.Google Scholar
Hall, J., 1865, Figures and Descriptions of Canadian Organic Remains; Decade II, Graptolites of the Quebec Group: Dawson Bros., Montreal, 151 p.CrossRefGoogle Scholar
Häntzschel, W., 1975, Trace fossils and problematica, in Teichert, C., ed., Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1 (second edition): Geological Society of America and University of Kansas Press, Boulder, Colorado, and Lawrence, Kansas, 269 p.Google Scholar
Harvey, W.H., 1855, Some account of the marine botany of the colony of western Australia: Transactions of the Royal Irish Academy, v. 22, p. 525566.Google Scholar
Hewitt, C., 2017, Procedural generation of tree models for use in computer graphics [Ph.D. dissertation]: Cambridge, University of Cambridge, 76 p.Google Scholar
Hiller, N., and Gess, R.W., 1996, Marine algal remains from the Upper Devonian of South Africa: Review of Palaeobotany and Palynology, v. 91, p. 143149.CrossRefGoogle Scholar
Hladikova, J., Hladil, J., and Kribek, B., 1997, Carbon and oxygen isotope record across Pridoli to Givetian stage boundaries in the Barrandian basin (Czech Republic): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 132, p. 225241.CrossRefGoogle Scholar
Høeg, O.A., 1927, Dimorphosiphon rectangulare. Preliminary note on a new Codiacea from the Ordovician of Norway: Avhandlinger utgitt av Det Norske Videnskaps-Akademi i Oslo, Matemattikk-Naturvitenskap Klasse, v. 4, p. 115.Google Scholar
Høeg, O.A., 1941, Buthotrephis nidarosiensis n. sp., a non-calcified alga from the lower Silurian of the Trondheim area: Det Kongelige Norske Videnskabers Selskab Forhandlinger, v. 13, p. 187190.Google Scholar
Howe, M.A., 1911, Phycological studies—V. Some marine algae of Lower California, Mexico: Bulletin of the Torrey Botanical Club, v. 38, p. 489514.CrossRefGoogle Scholar
Ishchenko, A.A., 1985, Silurian algae of Podolia. Naukova Dumka: Kiev, Academy of Science, Ukrainian SSSR, Institute of Geological Science, 112 p. [In Russian]Google Scholar
Johnson, J.H., 1946, Lime-secreting algae from the Pennsylvanian and Permian of Kansas: Geological Society of America Bulletin, v. 57, p. 10871120.CrossRefGoogle Scholar
Johnson, J.H., and Konishi, K., 1959, Studies of Silurian (Gotlandian) algae: Colorado School of Mines Quarterly, v. 55, p. 177.Google Scholar
Johnson, M.E., and Campbell, G.T., 1980, Recurrent carbonate environments in the lower Silurian of northern Michigan and their inter-regional correlation: Journal of Paleontology, v. 54, p. 10411057.Google Scholar
Kidston, R., 1886, Catalogue of the Palaeozoic Plants in the Department of Geology and Palaeontology, British Museum (Natural History): London, British Museum (Natural History), 288 p.Google Scholar
Kjellman, F.R., 1897, Marina chlorophyceer från Japan: Bihang til Kongliga Svenska Vetenskaps-Akademiens Handlingar, Afd. III, v. 23, p. 144.Google Scholar
Koop, H.-U., Schmid, R., Hennert, H.-H., and Milthaler, B., 1978, Chloroplast migration: a new circadian rhythm in Acetabularia: Protoplasma, v. 97, p. 301310.CrossRefGoogle Scholar
Korde, K.B., 1993, Noncalcified Paleozoic algae from the eastern Sayan Mountains: Paleontological Journal, v. 27, p. 141155.Google Scholar
Kozłowski, R., and Kaźmierczak, J., 1968, On two Ordovician calcareous algae: Acta Palaeontologica Polonica, v. 13, p. 325346.Google Scholar
Krassilov, V.A., 2005, Cyanobacteria and algae, in Ponomarenko, A.G., ed., Unique Sinsk Localities of Early Cambrian Organisms (Siberian Platform): Moscow, Trudy Paleontologicheskogo Instituta, Rossiyskaya Akademiya Nauk, p. 3441. [in Russian]Google Scholar
Lecuyer, C., and Paris, F., 1997, Variability in the δ13C of lower Palaeozoic palynomorphs: implications for the interpretation of ancient marine sediments: Chemical Geology, v. 138, p. 161170.CrossRefGoogle Scholar
Littler, D.S., and Littler, M.M., 2000, Caribbean Reef Plants: Washington, D.C., Off Shore Press, 542 p.Google Scholar
Littler, M.M., and Arnold, K.E., 1982, Primary productivity of marine macroalgal functional-form groups from southwestern North America: Journal of Phycology, v. 18, p. 307311.CrossRefGoogle Scholar
LoDuca, S.T., 1990, Medusaegraptus mirabilis as a noncalcified dasyclad alga: Journal of Paleontology, v. 64, p. 469474.Google Scholar
LoDuca, S.T., 1995, Thallophytic-alga-dominated biotas from the Silurian Lockport Group of New York and Ontario: Northeastern Geology and Environmental Sciences, v. 17, p. 371383.Google Scholar
LoDuca, S.T., 1997, The green alga Chaetocladus (Dasycladales): Journal of Paleontology, v. 71, p. 940949.CrossRefGoogle Scholar
LoDuca, S.T., 2019, New Ordovician marine macroalgae from North America, with observations on Buthograptus, Callithamnopsis, and Chaetocladus: Journal of Paleontology, v. 93, p. 197214.CrossRefGoogle Scholar
LoDuca, S.T., and Brett, C.E., 1997, The Medusaegraptus epibole and Ludlovian Konservat-Lagerstätten of eastern North America, in Brett, C.E., and Baird, G., eds., Paleontological Events: Stratigraphic, Ecological, and Evolutionary Implications: New York, Columbia University Press, p. 369405.Google Scholar
LoDuca, S.T., and Pratt, L., 2002, Stable carbon-isotopic compositions of compression fossils from lower Paleozoic Konservat-Lagerstätten: Palaios, v. 17, p. 287291.2.0.CO;2>CrossRefGoogle Scholar
LoDuca, S.T., and Tetreault, D.K., 2017, Ontogeny and reproductive functional morphology of the macroalga Wiartonella nodifera n. gen. n. sp. (Dasycladales, Chlorophyta) from the Silurian Eramosa Lagerstätte of Ontario, Canada: Journal of Paleontology, v. 91, p. 111.CrossRefGoogle Scholar
LoDuca, S.T., Melchin, M.J., and Verbruggen, H., 2011, Complex noncalcified macroalgae from the Silurian of Cornwallis Island, Arctic Canada: Journal of Paleontology, v. 85. p. 111121.CrossRefGoogle Scholar
LoDuca, S.T., Bykova, N., Wu, M., Xiao, S., and Zhao, Y., 2017, Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: a tale of two floras: Geobiology, v. 15, p. 588616.CrossRefGoogle ScholarPubMed
Lucas, A.H.S., 1927, On an additional occurrence of Bythotrephis in Victoria: Memoirs of the National Museum, Melbourne, v. 7, p. 157159.CrossRefGoogle Scholar
Mater, K.S., 1991, Facies analysis and diagenesis of the lower Engadine Group and the Manistique Group in Manistee, Mason and Oceana Counties, Michigan [M.S. thesis]: Kalamazoo, Western Michigan University, 178 p.Google Scholar
Mathieson, A.C., Dawes, C.J., Harris, L.G., and Hehre, E.J., 2003, Expansion of the Asiatic green alga Codium fragile subsp tomentosoides in the Gulf of Maine: Rhodora, v. 105, p. 153.Google Scholar
Mattox, K.R., and Stewart, K.D., 1984, Classification of the green algae: a concept based on comparative cytology, in Irvine, D.E.G., and John, D.M., eds., Systematics of the Green Algae: London, Academic Press, p. 2972.Google Scholar
Mierzejewski, P., 1986, Ultrastructure, taxonomy and affinities of some Ordovician and Silurian organic microfossils: Palaentologia Polonica, v. 47, p. 129220.Google Scholar
Monahan, J.W., 1931, Studies of the fauna of the Bertie Formation: The American Midland Naturalist, v. 12, p. 377400.CrossRefGoogle Scholar
Muir, L.A., Zhang, Y., and Lin, J., 2013, New material from the Ordovician of China indicates that Inocaulis is a graptolite: Alcheringa: An Australasian Journal of Palaeontology, v. 37, p. 565566.CrossRefGoogle Scholar
Nitecki, M.H., and Spjeldnaes, N., 1993, Silurian noncalcareous algae from Gotland, in Barattolo, F., DeCastro, P., and Parente, M., eds., Studies on Fossil Benthic Algae, Bollettino della Societá Paleontologica Italiana, Special Volume 1: Modena, Mucchi, p. 345351.Google Scholar
Obrhel, J., 1968, Maslovina meyenii n. g. et n. sp. neue Codiacea aus dem Silur Bohmens: Věstník Českého Geologického Ústavu, v. 43, p. 367370.Google Scholar
O'Connell, M., 1916, The habitat of the Eurypterida: Buffalo Society of Natural Science Bulletin, v. 11, p. 1227.Google Scholar
Oliveira-Carvalho, M.F, Pereira, S.M.B., and Pedroche, F.F., 2010, Taxonomy and distribution of green algal genus Codium (Bryopsidales, Chlorophyta) in Brazil: Nova Hedwigia, v. 91, p. 87109.CrossRefGoogle Scholar
Osgood, R.G. Jr., 1970, Trace fossils of the Cincinnati area: Palaeontographica Americana, v. 6, p. 276439.Google Scholar
Pohlman, J., 1881, On certain fossils of the Waterlime Group near Buffalo: Bulletin of the Buffalo Society of Natural Sciences, v. 4, p. 1722.Google Scholar
Reichenbach, H.G.L., 1828, Conspectus Regni Vegetabilis: Leipzig, Carl Cnobloch, 132 p.Google Scholar
Retallack, G.J., 1983, Middle Triassic megafossil marine algae and land plants from near Benmore Dam, southern Canterbury, New Zealand: Journal of the Royal Society of New Zealand, v. 13, p. 129154.CrossRefGoogle Scholar
Ruedemann, R., 1908, Graptolites of New York: part II, graptolites of the higher beds: New York State Museum Memoirs, v. 11, p. 457583.Google Scholar
Ruedemann, R., 1916, Account of some new or little known species of fossils from the New York State Museum: New York State Museum Bulletin, v. 189, p. 779.Google Scholar
Ruedemann, R., 1925, Some Silurian (Ontarian) faunas of New York: New York State Museum Bulletin 265, 84 p.Google Scholar
Ruedemann, R., 1947, Graptolites of North America: Geological Society of America Memoir 19, 652 p.CrossRefGoogle Scholar
Schaffner, J.H., 1922, The classification of plants XII: Ohio Journal of Science, v. 22, p. 129139.Google Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, v. 9, p. 671675.CrossRefGoogle ScholarPubMed
Schweitzer, H.J., 1983, Die Unterdevonflora des Rheinlandes, 1 Teil: Palaeontographica, v. 189, p. 1138.Google Scholar
Setchell, W.A., 1937, The Codiums of the Juan Fernandez Islands, in Skottsberg, C., ed., The Natural History of Juan Fernandez and Easter Island, Volume 2: Uppsala, Almqvist & Wiksells Boktryckeri, p. 587600.Google Scholar
Silva, P.C., 1979, Codium giraffa, a new marine green alga from tropical Pacific Mexico: Phycologia, v. 18, p. 264268.CrossRefGoogle Scholar
Silva, P.C., and Chacana, M.E., 2010, Validation of the name Codium profundum P.C. Silva & M.E. Chacana: Nova Hedwigia, v. 91, p. 249253.CrossRefGoogle Scholar
Simpson, S., 1957, On the trace fossil Chondrites: Quarterly Journal of the Geological Society of London, v. 112, p. 475499.CrossRefGoogle Scholar
Stackhouse, J., 1797, Nereis Britannica; continens species omnes fucorum in insulis britannicis crescentium: descriptione latine et anglico, necnon iconibus ad vivum depictis, Fasc. 2: Bath, S. Hazard, p. 3170.Google Scholar
Stanley, S., 1973, An ecological theory for the sudden origin of multicellular life in the late Precambrian: Proceedings of the National Academy of Science, v. 70, p. 14861489.CrossRefGoogle ScholarPubMed
Stolley, E., 1893, Uber Silurische Siphoneen: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 2, p. 135146.Google Scholar
Taggart, R.E., and Parker, L.R., 1976, A new fossil alga from the Silurian of Michigan: American Journal of Botany, v. 63, p. 13901392.CrossRefGoogle Scholar
Taylor, W.R., 1960, Marine Algae of the Eastern Tropical and Subtropical Coasts of the Americas: Ann Arbor, University of Michigan Press, 870 p.Google Scholar
Thomsen, M.S., and McGlathery, K.J., 2007, Stress tolerance of the invasive macroalgae Codium fragile and Gracilaria vermiculophylla in a soft-bottom turbid lagoon: Biological Invasions, v. 9, p. 499513.CrossRefGoogle Scholar
Torres, A.M., and Baars, D.L., 1992, Using the term utricle: Journal of Paleontology, v. 66, p. 688.CrossRefGoogle Scholar
Verbruggen, H., Ashworth, M., LoDuca, S.T., Vlaeminck, C., Cocquyt, E., Sauvage, T., Zechman, F., Littler, D., Littler, M., Leliaert, F., and De Clerk, O., 2009, A multi-locus time-calibrated phylogeny of the siphonous green algae: Molecular Phylogenetics and Evolution, v. 50, p. 642653.CrossRefGoogle ScholarPubMed
Vickers, A., 1905, Liste des algues marines de la Barbade: Annales des Sciences Naturelles, Botanique, ser. 9, v. 1, p. 4566.Google Scholar
von Bitter, P.H., Purnell, M.A., Tetreault, D.K., and Stott, C.A., 2007, Eramosa Lagerstätte—exceptionally preserved soft-bodied biotas with shallow-marine shelly and bioturbating organisms (Silurian, Ontario, Canada): Geology, v. 35, p. 879882.CrossRefGoogle Scholar
Vrazo, M.B., Brett, C.E., and Ciurca, S.J., 2016, Buried or brined? Eurypterids and evaporates in the Silurian Appalachian basin: Palaeogeography, Palaeoclimatology, Palaoecology, v. 444, p. 4859.CrossRefGoogle Scholar
Weber-van Bosse, A., 1896, On a new genus of Siphonean algae—Pseudocodium: Journal of the Linnean Society of London, Botany, v. 32, p. 209212.CrossRefGoogle Scholar
White, D., 1901, Two new species of algae of the genus Buthotrephis, from the upper Silurian of Indiana: Proceedings of the United States National Museum, v. 24, p. 265273.CrossRefGoogle Scholar
White, D., 1902, A new name for Buthotrephis divaricata: Proceedings of the Biological Society of Washington, v. 15, p. 86.Google Scholar