Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T12:35:27.903Z Has data issue: false hasContentIssue false

The cladid crinoid Barycrinus from the Burlington Limestone (early Osagean) and the phylogenetics of Mississippian botryocrinids

Published online by Cambridge University Press:  14 July 2015

Forest J. Gahn
Affiliation:
Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109-1079,
Thomas W. Kammer
Affiliation:
Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300,

Abstract

All species of Barycrinus from the early Osagean Burlington Limestone of the United States midcontinent are reviewed. Burlington Barycrinus species include: B. rhombiferus (Owen and Shumard, 1852); B. magister (Hall, 1858); B. spurius (Hall, 1858); B. crassibrachiatus (Hall, 1860); B. scitulus (Meek and Worthen, 1860) n. combination; and B. sampsoni Miller and Gurley, 1896. Cyathocrinus latus Hall, 1861a, is here considered a junior synonym of B. rhombiferus. The stratigraphic practice of dividing the Burlington into upper and lower parts, for purposes of reporting species ranges, is evaluated.

Morphologic data from these Burlington species are combined with data from late Osagean and Meramecian botryocrinid species of Barycrinus and Meniscocrinus, plus four species of Devonian and Mississippian Costalocrinus in a parsimony-based phylogenetic analysis of Mississippian botryocrinids. Results of this analysis indicate that 1) species of Barycrinus form a monophyletic clade that radiated rapidly during the Osagean; 2) B. rhombiferus may have been ancestral to all other Barycrinus species; and 3) M. magnitubus forms a clade with the Mississippian C. cornutus (Owen and Shumard, 1850) and the Devonian C. rex McIntosh, 1984.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. N. III. 1972. Consensus techniques and the comparison of taxonomic trees. Systematic Zoology, 21:390397.Google Scholar
Ausich, W. I. 1997. Regional encrinites: a vanished lithofacies, p. 509519. In Brett, C. E. (ed.), Paleontological Events: Stratigraphic, Ecologic, and Evolutionary Implications. Columbia University Press, New York.Google Scholar
Ausich, W. I. 1998a. Early phylogeny and subclass division of the Crinoidea (Phylum Echinodermata). Journal of Paleontology, 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998b. Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea. University of Kansas Paleontological Contributions, new series, no. 9, 36 p.Google Scholar
Ausich, W. I. 1999. Lower Mississippian Burlington Limestone along the Mississippi River Valley in Iowa, Illinois, and Missouri, USA, p. 139144. In Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J. (eds.), Fossil Crinoids. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Ausich, W. I., and Meyer, D. L. 1994. Hybrid crinoids in the fossil record (Early Mississippian, Phylum Echinodermata). Paleobiology, 20:362367.CrossRefGoogle Scholar
Bassler, R. S., and Moodey, M. W. 1943. Bibliographic and faunal index of Paleozoic pelmatozoan echinoderms. Geological Society of America Special Paper 45, 734 p.Google Scholar
Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42(4):795803Google Scholar
Brower, J. C. 1992. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.CrossRefGoogle Scholar
Donovan, S. K. 1988. The early evolution of the Crinoidea, p. 235–244. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford, 373 p.Google Scholar
Donovan, S. K., and Veltkamp, C. J. 1990. Barycrinus (Crinoidea) from the Lower Carboniferous of England. Journal of Paleontology, 64:988991.CrossRefGoogle Scholar
Feldman, H. R. 1989. Echinoderms of the Somerset Shale Member, Salem Limestone (Mississippian), in Indiana and Kentucky. Journal of Paleontology, 63:900912.CrossRefGoogle Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies; an approach using the bootstrap. Evolution, 39:783791.CrossRefGoogle ScholarPubMed
Hall, J. 1857. Observations upon the Carboniferous limestones of the Mississippi Valley. American Journal of Science, 23:187203.Google Scholar
Hall, J. 1858. Report on the Geological Survey of Iowa embracing the results of investigations made during portions of the years 1855, 1856, 1857. Geological Survey of Iowa, Volume I, Pt. 1 and 2, 724 p.Google Scholar
Hall, J. 1860. Contributions to the palaeontology of Iowa: being descriptions of new species of Crinoidea and other fossils. Iowa Geological Survey, 1(2) supplement, 94 p.Google Scholar
Hall, J. 1861a. Descriptions of new species of Crinoidea and other fossils, from the Carboniferous rocks of the Mississippi Valley. Iowa Geological Survey Report of Investigations, Preliminary Notice. Albany, New York, 19 p.Google Scholar
Hall, J. 1861b. Descriptions of new species of Crinoidea from the Carboniferous rocks of the Mississippi valley. Boston Society of Natural History Journal, 7:261328.Google Scholar
Harris, S. E., and Parker, M. C. 1964. Stratigraphy of the Osage Series in southeastern Iowa. Iowa Geological Survey, Report of Investigations 1, 52 p.Google Scholar
Hillis, D. M., and Bull, J. J. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42:182192.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991. Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology, 40:257270.CrossRefGoogle Scholar
Jaekel, O. 1918. Phylogenie und System der Pelmatozoen. Paläontologische Zeitschrift, 3(1):1128Google Scholar
Kaiser, C. H. 1950. Stratigraphy of the lower Mississippian rocks in southwestern Missouri. Bulletin of the American Association of Petroleum Geologists, 34(11):21332175Google Scholar
Kallersjo, M., Farris, J. S., Kluge, A. G., and Bult, C. 1992. Skewness and permutation. Cladistics, 8:275287.CrossRefGoogle Scholar
Kammer, T. W. 2001. Phenotypic bradytely in the Costalocrinus-Barycrinus lineage of Paleozoic cladid crinoids. Journal of Paleontology, 75:383389.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1992. Advanced cladid crinoids from the Middle Mississippian of the east-central United States: primitivegrade calyces. Journal of Paleontology, 66:461480.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1993. Advanced cladid crinoids from the Middle Mississippian of the east-central United States: intermediate-grade calyces. Journal of Paleontology, 67:614639.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1994. Advanced cladid crinoids from the Middle Mississippian of the east-central United States: advanced-grade calyces. Journal of Paleontology, 68:339351.CrossRefGoogle Scholar
Kammer, T. W., and Ausich, W. I. 1996. Primitive cladid crinoids from upper Osagean-lower Meramecian (Mississippian) rocks of east-central United States. Journal of Paleontology, 70:835866.CrossRefGoogle Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1997. Species longevity as a function of niche breadth: evidence from fossil crinoids. Geology, 25:219222.2.3.CO;2>CrossRefGoogle Scholar
Kammer, T. W., Baumiller, T. K., and Ausich, W. I. 1998. Evolutionary significance of differential species longevity in Osagean-Meramecian (Mississippian) crinoid clades. Paleobiology, 24:155176.Google Scholar
Kelly, S. M. 1986. Classification and evolution of Class Crinoidea. Abstracts of the 4th North American Paleontological Convention, p. A23.Google Scholar
Lane, H. R. 1978. The Burlington shelf (Mississippian, north-central United States). Geologica et Paleontologica, 12:165176.Google Scholar
Laudon, L. R. 1937. Stratigraphy of the northern extension of the Burlington Limestone in Missouri and Iowa. Bulletin of the American Association of Petroleum Geologists, 21:11581167.Google Scholar
Laudon, L. R. 1973. Stratigraphic crinoid zonation in Iowa Mississippian rocks. Proceedings of the Iowa Academy of Science, 80:2533.Google Scholar
Maddison, W. P. 1989. Reconstructing character evolution on polytomous cladograms. Cladistics, 5:365377.CrossRefGoogle Scholar
McIntosh, G. C. 1984. Devonian cladid inadunate crinoids: family Botryocrinidae Bather, 1899. Journal of Paleontology, 58:12601281.Google Scholar
Meek, F. B., and Worthen, A. H. 1860. Description of new species of Crinoidea and Echinoidea from the Carboniferous rocks of Illinois, and other western states. Academy of Natural Sciences, Philadelphia, Proceedings, Series 2, 4:379397.Google Scholar
Meek, F. B., and Worthen, A. H. 1866. Descriptions of invertebrates from the Carboniferous system. Illinois Geological Survey, 2:143411.Google Scholar
Meek, F. B., and Worthen, A. H. 1868. Remarks on some types of Carboniferous Crinoidea with descriptions of new genera and species of the same, and of one echinoid. Academy of Natural Sciences, Philadelphia, Proceedings, 20:335359.Google Scholar
Meek, F. B., and Worthen, A. H. 1870. Description of new species and genera of fossils from the Paleozoic rocks of the western states. Proceedings of the Academy of Natural Sciences of Philadelphia for 1870, p. 2256.Google Scholar
Meek, F. B., and Worthen, A. H. 1873. Descriptions of invertebrates from Carboniferous System. Illinois Geological Survey, 5:321619.Google Scholar
Miller, J. S. 1821. A Natural History of the Crinoidea or Lily-Shaped Animals, with Observation on the genera Asteria, Euryale, Comatula, and Marsupites. Bryan and Company; Bristol, England, 150 p.Google Scholar
Miller, S. A., and Gurley, W. F. E. 1896. New species of Echinodermata and a new crustacean from the Palaeozoic rocks. Illinois State Museum, Bulletin 10:191.Google Scholar
Moore, R. C. 1928. Early Mississippian formations in Missouri. Missouri Bureau of Geology and Mines, 2nd series, Volume 21, 283 p.Google Scholar
Moore, R. C., and Laudon, L. R. 1943. Evolution and classification of Paleozoic crinoids. Geological Society of America Special Paper 46, 167 p.CrossRefGoogle Scholar
Moore, R. C., Lane, N. G., and Strimple, H. L. 1978. Order Cladida, p. T578T755. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Niles, W. H., and Wachsmuth, C. 1866. Evidence of two distinct geological formations in the Burlington Limestone. American Journal of Science, 42:9599.CrossRefGoogle Scholar
Nixon, K. C., and Davis, J. I. 1991. Polymorphic taxa, missing values and cladistic analysis. Cladistics, 7:233241.CrossRefGoogle Scholar
Owen, D. D., and Shumard, B. F. 1850. Descriptions of fifteen new species of Crinoidea from the Subcarboniferous limestone of Iowa. Journal of the Philadelphia Academy of Natural Sciences, Series 2, Volume 2, Pt. 1, p. 5770.Google Scholar
Owen, D. D., and Shumard, B. F. 1852. Descriptions of seven new species of Crinoidea from the Subcarboniferous limestone of Iowa and Illinois. Journal of the Philadelphia Academy of Natural Sciences, Series 2, Volume 2, Pt. 2, p. 8994.Google Scholar
Peck, R. E., and Keyte, I. A. 1938. The Crinoidea of the Chouteau Limestone. In Stratigraphy and paleontology of the Lower Mississippian of Missouri, Pt. 2, Missouri University Studies, 13(4):70108, pl. 27–31.Google Scholar
Rowley, R. R. 1908. Geology of Pike County, Missouri. Missouri Bureau of Geology and Mines, 2nd Series, 8:1122.Google Scholar
Schultze, L. 1867. Monographie der Echinodermen des Eifler Kalkes. Denkschriften der Kaiserlich Akademie der Wissenschaften Mathematisch-Naturwissenschaftlichen Classe. Wien. 26(2):113230Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry (second edition). W. H. Freeman, San Francisco.Google Scholar
Stearn, C. W., and Carroll, R. L. 1989. Paleontology: The Record of Life. John Wiley and Sons, Inc., New York, 453 p.Google Scholar
Sumrall, C. D., Garbisch, J., and Pope, J. P. 2000. The systematics of Postibulinid edrioasteroids. Journal of Paleontology, 74:7283.CrossRefGoogle Scholar
Swofford, D. L. 1993. PAUP: phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Thompson, T. L. 1986. Paleozoic Succession in Missouri, Pt. 4, Mississippian System. Missouri Geological Survey. Report of Investigations, 70, 182 p.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Van Sant, J. F. 1964. Crawfordsville crinoids, p. 34136. In Van Sant, J. F. and Lane, N. G. (eds.), Crawfordsville Crinoid Studies. University of Kansas Paleontological Contributions, Echinodermata, Article 7.Google Scholar
Van Tuyl, F. M. 1925. The stratigraphy of the Mississippian formations of Iowa. Iowa Geological Survey, 30:33349.CrossRefGoogle Scholar
Wachsmuth, C., and Springer, F. 1886. Revision of the Palaeocrinoidae, Pt. 3, Sec. 2, Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions. Proceedings of the Academy of Natural Sciences of Philadelphia for 1885, p. 64226 (140–302).Google Scholar
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Harvard College Museum of Comparative Zoology, Memoir 20, 21, 897 p.Google Scholar
Webster, G. D. 1973. Bibliography and index of Paleozoic crinoids 1942–1968. Geological Society of America Memoir, 137, 341 p.Google Scholar
Webster, G. D. 1977. Bibliography and index of Paleozoic crinoids 1969–1973. Geological Society of America Microform Publication 8, 235 p.Google Scholar
Webster, G. D. 1986. Bibliography and index of Paleozoic crinoids 1974–1980. Geological Society of America Microform Publication, 16, 405 p.Google Scholar
Webster, G. D. 1988. Bibliography and index of Paleozoic crinoids 1981–1985. Geological Society of America Microform Publication 18, 236 p.Google Scholar
Webster, G. D. 1993. Bibliography and index of Paleozoic crinoids 1986–1990. Geological Society of America Microform Publication 25, 204 p.Google Scholar
White, C. A. 1860. Observations upon the geology and paleontology of Burlington, Iowa, and its vicinity. Boston Journal of Natural History, 7:209235.Google Scholar
Witzke, B. J., and Bunker, B. J. 1996. Relative sea-level changes during Middle Ordovician through Mississippian deposition in the Iowa area, North American craton, p. 307330. In Witzke, B. J., Ludvigson, G. A., and Day, J. (eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton, Boulder, Colorado. Geological Society of America Special Paper 306.CrossRefGoogle Scholar
Witzke, B. J., McCay, R. M., Bunker, B. J., and Woodson, F. J. 1990. Stratigraphy and paleoenvironments of Mississippian strata in Keokuk and Washington counties, southeast Iowa. Department of Natural Resources, Geological Survey Bureau. Guidebook Series no. 10, 105 p.Google Scholar
Wright, J. 1942. New British Carboniferous crinoids. Geological Magazine, 79:269283.CrossRefGoogle Scholar
Wright, J. 1950. A monograph of the British Carboniferous Crinoidea. Palaeontographical Society, London, Pt. 1, p. 124, pls. 1–7.Google Scholar