Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T02:52:21.470Z Has data issue: false hasContentIssue false

Calibrating spatial and temporal species richness patterns in tropical American Marginellid gastropods

Published online by Cambridge University Press:  20 May 2016

Ross H. Nehm*
Affiliation:
Naturhistorisches Museum Basel, Augustinergasse 2, CH-4001, Basel, Switzerland,

Abstract

Collectively, studies of the structure of Neogene diversity change in tropical American mollusks have lacked 1) species-level analyses within well-established clades; 2) consideration of abundance and sample size on diversity estimates and comparisons; and 3) geographic comparisons within temporal intervals. This study takes all three factors into consideration and compares Miocene to Recent species richness patterns in tropical American marginellid gastropod species within the clade Prunum+Volvarina. Rarefaction analyses of more than 16,000 specimens from more than 500 samples are used to standardize comparisons of species richness through time and space. Species richness in Prunum+Volvarina from the Miocene to the Recent of the Tropical Western Atlantic (TWA) is compared along a latitudinal gradient from north to south (Florida, the Dominican Republic, and Venezuela). Additionally, temporal patterns of diversity change are compared between the TWA and the Tropical Eastern Pacific (TEP: Peru, Ecuador, Colombia, Panama, and Costa Rica).

As is the case with most Neogene lineages, the number of marginellid specimens and samples differ significantly through both time and space. Rarefaction analyses of both specimens and samples indicate that: 1) significant geographic differences in species richness were detected between the Miocene, Pliocene, Pleistocene, and Recent of the TWA; 2) temporal patterns of species richness were similar in the northern and southern TWA; 3) from the Miocene to the Recent, marginellid species richness in the TEP has always been significantly less than TWA diversity; and 4) from the Miocene to the Recent, TWA diversity decreased significantly, whereas TEP diversity was stable and low. Separate rarefaction analyses using the numbers of specimens and samples did not always produce concordant results and indicate that the unit of analysis influences estimates of species richness. Discordant specimen/sample rarefaction results may be a product of sample size. Intrinsic ecological and evolutionary differences do not appear to be primary contributors to differences in marginellid species richness between the TEP and TWA.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R. T. 1974. American Seashells, the Marine Mollusca of the Atlantic and Pacific Coasts of North America. Van Nostrand, New York, 663 p.Google Scholar
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. 1993. Diversity of Atlantic coastal plain mollusks since the Pliocene. Science, 260:16261629.CrossRefGoogle ScholarPubMed
Allmon, W. D., Emslie, S. D., Jones, D. S., and Morgan, G. S. 1996. Late Neogene oceanographic change along Florida's west coast: evidence and mechanisms. Journal of Geology, 104:143162.CrossRefGoogle Scholar
Alroy, J. 1998. Equilibrial diversity dynamics in North American mammals, p. 232287. In McKinney, M. L. and Drake, J. A. (eds.), Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities. Columbia University Press, New York, 528 p.Google Scholar
Anderson, L. C. In press. Temporal and geographic size trends in Neogene Corbulidae (Bivalvia) of tropical America: Using environmental sensitivity to decipher causes of morphologic trends. Palaeogeography, Palaeoclimatology, Palaeoecology.Google Scholar
Benton, M. J. 1995. Diversity and extinction in the history of life. Science, 268:5258.CrossRefGoogle ScholarPubMed
Budd, A. F., and Johnson, K. G. 1999. Origination preceding extinction during late Cenozoic turnover of Caribbean reefs. Paleobiology, 25:188200.CrossRefGoogle Scholar
Cheetham, A. H., and Jackson, J. B. C. 1996. Speciation, extinction, and the decline of arborescent growth in Neogene and Quaternary Cheilostome bryozoa of tropical America, p. 205233. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Coates, A. G., and Obando, J. A. 1996. The geologic evolution of the Central American Isthmus, p. 2156. In Jackson, J. B. C., Budd, A. F., Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Collins, L. S., and Coates, A. G. 1999. Introduction, p. 516. In L. Collins, S. and Coates, A. G. (eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology, 357.Google Scholar
Coovert, G. A., and Coovert, H. K. 1995. Revision of the suprageneric classification of marginelliform gastropods. The Nautilus, 109(2–3):43110 Google Scholar
Cracraft, J. 1985. Biological diversification and its causes. Annals of the Missouri Botanical Garden, 72:794822.CrossRefGoogle Scholar
Diaz Merlano, J. M. 1994. Moluscos del Caribe Colombiano: Un catalogo ilustrado. Colciencias. Fundacion Natura. Invemar, p.205209.Google Scholar
Donovan, S. K., and Paul, C. R. C. (eds.). 1998. The Adequacy of the Fossil Record. John Wiley and Sons, New York, 312 p.Google Scholar
Erwin, D. H. 1998. After the end: Recovery from extinction. Science, 279:13241325.CrossRefGoogle Scholar
Gage, J. D., and May, R. M. 1993. A dip into the deep sea. Nature, 365:609610.CrossRefGoogle Scholar
Gage, J. D., and Tyler, P. A. 1991. Deep Sea Biology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Gartner, S., Chow, J., and Stanton, R. J. 1987. Late Neogene paleoceanography of the eastern Caribbean, the Gulf of Mexico, and the eastern equatorial Pacific. Marine Micropaleontology, 12:255304.CrossRefGoogle Scholar
Gray, J. S. 1997. Gradients in marine biodiversity, p. 1834. In Ormond, R. F. G., Gage, J. D., and Angel, M. V. (eds.), Marine Biodiversity: Pattern and Process. Cambridge University Press, Cambridge, 449 p.CrossRefGoogle Scholar
Hansen, T. A. 1980. Influence of larval dispersal and geographic distribution on species longevity in neogastropods. Paleobiology, 6:193209.CrossRefGoogle Scholar
Hayek, L., and Buzas, M. A. 1997. Surveying Natural Populations. Columbia University Press, New York. 563 p.Google Scholar
Heck, K. L. Jr., Van Belle, G., and Simberloff, D. 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56:14591461.CrossRefGoogle Scholar
Holland, S. 1991. Analytic Rarefaction 1.2. Program distributed by the author.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: A critique and alternative parameters. Ecology, 52:577586.CrossRefGoogle ScholarPubMed
Jablonski, D. 1982. Evolutionary rates and modes in late Cretaceous gstropods: rate of larval ecology. Third North American Paleontological Convention Proceedings, 1:257262.Google Scholar
Jackson, J. B. C. 1974. Biogeographic consequences of eurytopy and stenotopy among marine bivalves and their biogeographic significance. American Naturalist, 104:541560.CrossRefGoogle Scholar
Jackson, J. B. C., and Budd, A. F. 1996. Evolution and environment: introduction and overview, p. 120. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Jackson, J. B. C., Budd, A. F., and Coates, A. G. 1996. Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Jackson, J. B. C., Jung, P., and Fortunato, H. 1996. Paciphilia revisited: transisthmian evolution of the Strombina Group (Gastropoda: Columbellidae), p. 234270. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Jackson, J. B. C., Jung, P., Coates, A. G., and Collins, L. S. 1993. Diversity and extinction of tropical American mollusks and emergence of the Isthmus of Panama. Science, 260:16241626.CrossRefGoogle ScholarPubMed
Jackson, J. B. C., Todd, J. A., Fortunato, H., and Jung, P. 1999. Diversity and assemblages of Neogene Caribbean mollusca of lower Central America, p. 193357. In Collins, L. S. and Coates, A. G. (eds.), A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology, 357 p.Google Scholar
Jackson, J. B. C., Fortunato, H., Todd, J., Heitz, A., Johnson, K., and Jung, P. 1999. Molluscan diversity increased with declining productivity in tropical America. Geological Society of America Programs with Abstracts, A399.Google Scholar
Lieberman, B. S. 1995. Phylogenetic trends and speciation: analyzing macroevolutionary processes and levels of selection, p. 316339. In Erwin, D. and Anstey, R. (eds.), New Approaches to Speciation in the Fossil Record. Columbia University Press, New York, 342 p.Google Scholar
Marshall, C. R. 1998. Determining stratigraphic ranges, p. 2353. In Donovan, S. and Paul, R. (eds.), The Adequacy of the Fossil Record. John Wiley and Sons, New York, 312 p.Google Scholar
Martin, R. E. 1999. Taphonomy: A Process Approach. Cambridge University Press, Cambridge, 508 p.CrossRefGoogle Scholar
McKinney, M. L. 1998. Biodiversity dynamics: Niche preemption and saturation in diversity equilibria, p. 118. In McKinney, M. L. and Drake, J. A. (eds.), Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities. Columbia University Press. New York, 528 p.Google Scholar
Meyer, G. B. 1977. Algas marinas benticas indicadores de un are afectada por agues de surgencia frente a la costa Caribe de Colombia. Anales del Instituto Marino de Punta Betin, 9:4571.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 22(2):304309 Google Scholar
Miller, A. I., and Mao, S. 1998. Scales of diversification and the Ordovician radiation, p. 288310. In McKinney, M. L. and Drake, J. A. (eds.), Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities. Columbia University Press, New York, 528 p.Google Scholar
Nehm, R. H. 1996. Estimating phylogenetic relationships in marginelliform gastropods: revisiting replicability and testability in molluscan systematics. American Malacological Union Programs and Abstracts. Nehm, R. H. 1998. Macroevolution and development in marginellid gastropods from the Neogene of the Caribbean Basin. Ph.D. dissertation, University of California-Berkeley, 427 p.Google Scholar
Nehm, R. H., and Geary, D. H. 1994. A gradual morphologic transition during a rapid speciation event in marginellid gastropods (Neogene; Dominican Republic). Journal of Paleontology, 68(4):787795 Google Scholar
Nehm, R. H., and Tran, C. 1997. Molecular phylogeny of marginelliform gastropods: a progress report. American Malacological Union Program with Abstracts.Google Scholar
Novacek, M. J., and Wheeler, Q. D. 1992. Extinction and Phylogeny. Columbia University Press, New York, 253 p.Google Scholar
Olsson, A. A. 1968. A review of late Cenozoic stratigraphy of southern Florida, p. 6682. In Late Cenozoic stratigraphy of southern Florida—a reappraisal. Miami Geological Survey, Miami.Google Scholar
Paine, R. T. 1974. Intertidal community structure: experimental studies on the relationship between a dominant competitor and its principal predator. Oecologia, 15:93120.CrossRefGoogle ScholarPubMed
Petuch, E. J. 1981. A relict Neogene Caenogastropod fauna from northern South America. Malacologia, 20(2):307347 Google Scholar
Petuch, E. J. 1982a. Geographical heterochrony: contemporaneous coexistence of Neogene and Recent molluscan faunas in the Americas. Palaeogeography, Palaeoclimatology, Palaeoecology, 37:277312.CrossRefGoogle Scholar
Petuch, E. J. 1982b. Paraprovincialism: remnants of paleoprovincial boundaries in recent marine molluscan provinces. Proceedings of the Biological Society of Washington, 95(4):774780 Google Scholar
Petuch, E. J. 1995. Molluscan diversity in the late Neogene of Florida: evidence for a two-staged mass extinction. Science, 270:275277.CrossRefGoogle Scholar
Rex, M. A. 1973. Deep-sea species diversity: decreased gastropod diversity at abyssal depths. Science, 181:10511053.CrossRefGoogle ScholarPubMed
Rex, M. A. 1981. Community structure in the deep-sea benthos. Annual Reviews of Ecology and Systematics, 12:331–53.CrossRefGoogle Scholar
Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. F. 1993. Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature, 365:636639.CrossRefGoogle Scholar
Ricklefs, R. E., and Schluter, D. (eds.). 1993. Species Diversity in Ecological Communities. Historical and Geographical Perspectives. University of Chicago Press, Chicago, 414 p.Google Scholar
Roopnarine, P. D. 1996. Systematics, biogeography, and extinction of Chionine bivalves (Bivalvia: Veneridae) in tropical America: Early Oligocene-Recent. Malacologia, 38(1–2):103142 Google Scholar
Rosenberg, G. 1993a. A database approach to studies of molluscan taxonomy, biogeography, and diversity, with examples from western Atlantic marine gastropods. American Malacological Bulletin, 10(2):257266 Google Scholar
Rosenberg, G. 1993b. Malacolog 1.0: an electronic database of western Atlantic Mollusca. Distributed by the author.Google Scholar
Rosenzweig, M., and Abramsky, Z. 1993. How are diversity and productivity related?, p. 5265. In Ricklefs, R. E. and Schluter, D. (eds.), Species Diversity in Ecological Communities. Historical and Geographical Perspectives. University of Chicago Press. Chicago, 414 p.Google Scholar
Ross, R. M., and Allmon, W. D. (eds.). 1990. Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago, 480 p.Google Scholar
Schopf, K. M., and Ivany, L. C. 1998. Scaling the ecosystem: A hierarchical view of stasis and change, p. 187212. In McKinney, M. L. and Drake, J. A. (eds.), Biodiversity Dynamics: Turnover of Populations, Taxa, and Communities. Columbia University Press, New York, 528 p.Google Scholar
Simpson, G. G. 1953. The Major Features of Evolution. Columbia University Press, New York, 434 p.CrossRefGoogle Scholar
Stanley, S. M. 1986a. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios, 1:1736.CrossRefGoogle Scholar
Stanley, S. M. 1986b. Population size, extinction, and speciation: the fission effect in Neogene bivalvia. Paleobiology, 12:89110.CrossRefGoogle Scholar
Stanley, S. M. 1990. The general correlation between rate of speciation and rate of extinction: Fortuitous causal linkages, p. 103127. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago, 480 p.Google Scholar
Stanley, S. M., and Campbell, L. D. 1981. Neogene mass extinction of western Atlantic mollusks. Nature, 293:457459.CrossRefGoogle Scholar
Taylor, P. J. 1997. Diversity and structure of tropical Indo-Pacific benthic communities: relation to regimes of nutrient input. p. 178200. In Ormond, R. F. G., Gage, J. D., and Angel, M. V. (eds.), Marine Biodiversity: Pattern and Process. Cambridge University Press, Cambridge, 449 p.CrossRefGoogle Scholar
Tiffney, B. H., and Niklas, K. J. 1990. Continental area, dispersion, latitudinal distribution and topographic variety: a test of correlation with terrestrial plant diversity, p. 76102. In Ross, R. M. and Allmon, W. D. (eds.), Causes of Evolution: A Paleontological Perspective. University of Chicago Press, Chicago, 480 p.Google Scholar
Tipper, J. C. 1979. Rarefaction and rarefiction—the use and abuse of the method in paleoecology. Paleobiology, 5:423434.CrossRefGoogle Scholar
Valentine, J. W. 1973. Evolutionary Paleoecology of the Marine Biosphere. Prentice Hall, Englewood Cliffs, NJ.Google Scholar
Valentine, J. W. 1985. Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, NJ, 441 p.Google Scholar
Valentine, J. W., and Moores, E. M. 1972. Global tectonics and the fossil record. Journal of Geology, 80:167184.CrossRefGoogle Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. Belknap Press, Harvard, MA.Google Scholar
Vermeij, G. J. 1993a. A Natural History of Shells. Princeton University Press, Princeton, NJ.Google Scholar
Vermeij, G. J. 1993b. Straight answers to a twisted isthmus. Paleobiology.Google Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American mollusks: endemism, architecture, and the Panama land bridge. Malacologia, 27(1):2941 Google Scholar
West-Eberhardt, M. J. 1983. Sexual selection, social competition and speciation. Quarterly Review of Biology, 58:155–83.Google Scholar
Wilson, E. O. 1992. The Diversity of Life. Belknap Press, Harvard University Press, 424 p.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. Proceedings of the American Philosophical Society, 110:425–33.Google Scholar