Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T08:09:10.441Z Has data issue: false hasContentIssue false

Bryozoan growth habits: Classification and analysis

Published online by Cambridge University Press:  14 July 2015

Steven J. Hageman
Affiliation:
1Department of Geology, Field Museum of Natural History, Roosevelt Road at Lake Shore Drive, Chicago, Illinois 60605
Philip E. Bock
Affiliation:
2Geology and Geological Engineering, Royal Melbourne Institute of Technology, Box 2476V, Melbourne, Victoria 3001, Australia
Yvonne Bone
Affiliation:
3Department of Geology and Geophysics, University of Adelaide, Adelaide, South Australia 5005, Australia
Brian Mcgowran
Affiliation:
3Department of Geology and Geophysics, University of Adelaide, Adelaide, South Australia 5005, Australia

Abstract

Bryozoans are an important part of the benthic marine fauna in a wide variety of modern environments and are found in rock forming abundance in a number of settings throughout much of the Phanerozoic. Bryozoologists and nonspecialists have grouped taxa into colonial growth forms (e.g., erect fenestrates or encrusting sheets), both to simplify analyses and because correlations exist between some colony growth forms and the environmental conditions in which the organism lived. These correlations allow for the possibility of paleoenvironmental analyses based on skeletons alone. Existing bryozoan colonial growth form classifications do not, however, fully exploit the ecological information present in colony form.

A new scheme is proposed here (Analytical Bryozoan Growth Habit Classification), which provides a list of colony-level morphological characteristics for bryozoan growth habits. This differs from previous approaches to bryozoan growth form analysis in that it is a classification of growth habit characteristics rather than a classification of morphological groups as such. The classification is based on eleven character classes, which describe the orientation of the colony and its occupation of, and placement in space. The overall colony shape is described based on the arrangement of modules in colonial growth. This classification provides a common ground for systematic comparison of character states among varied bryozoan growth habits. This approach allows for the evaluation of correlations among observed morphological character states and specific environmental conditions in which they develop. In addition, these growth habit characters can be used to recognize, characterize, evaluate, and apply more traditional growth form groups in broader studies.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassler, R. S. 1953. Bryozoa, p. 1253. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part G. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Bell, A. D. 1986. The simulation of branching patterns in modular organisms. Philosophical Transactions of the Royal Society, London, Series B, 313:143159.Google Scholar
Blake, D. B. 1976. Functional morphology and taxonomy of branch dimorphism in the Paleozoic bryozoan genus Rhabdomeson. Lethaia, 9:169178.CrossRefGoogle Scholar
Blake, D. B. 1980. Homeomorphy in Paleozoic bryozoans: a search for explanations. Paleobiology, 6:451465.CrossRefGoogle Scholar
Blake, D. B. 1981. Paleoecology of Bryozoa, p. 3751. In Broadhead, T. W. (ed.), Lophophorates: Notes for a Short Course. University of Tennessee Department of Geological Sciences Studies in Geology, 5.Google Scholar
Blake, D. B. 1983. The Order Cryptostomata, p. 440452. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Boardman, R.S., and Cheetham, A. H. 1973. Degrees of colony dominance in stenolaemate and gymnolaemate Bryozoa, p. 121220. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. (eds.), Animal Colonies. Development and Function Through Time. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
Boekschoten, G. J. 1966. Shell borings of sessile epibiontic organisms as palaeoecological guides (with examples from the Dutch coast). Palaeogeography Palaeoclimatology Palaeoecology, 2:333379.CrossRefGoogle Scholar
Bone, Y., and James, N. P. 1993. Bryozoans as carbonate sediment producers on the cool-water Lacepede Shelf, southern Australia. Sedimentary Geology, 86:247271.CrossRefGoogle Scholar
Brood, K. 1972. Cyclostomatous Bryozoa from the Upper Cretaceous and Danian of Scandinavia. Stockholm Contributions in Geology, 26, 464 p.Google Scholar
Brown, D. A. 1952. The Tertiary Cheilostomatous Polyzoa of New Zealand. The Trustees of the British Museum, London, 405 p.Google Scholar
Callaghan, T. V., Svensson, B. M., Bowman, H., Lindley, D.K., and Carlsson, B. A. 1990. Models of clonal plant growth based on population dynamics and architecture. Oikos, 57:257269.CrossRefGoogle Scholar
Canu, F., and Bassler, R. S. 1920. North American Early Tertiary Bryozoa. United States National Museum Bulletin, 106. 879 p.CrossRefGoogle Scholar
Canu, F., and Bassler, R. S. 1929. Bryozoa of the Philippine Region. United States National Museum Bulletin, 100, 685 p.Google Scholar
Cheetham, A. H. 1963. Late Eocene zoogeography of the eastern gulf coast region. Geological Society of America Memoir, 91, 879 p.Google Scholar
Cheetham, A. H. 1966. Cheilostomatous Polyzoa from the Upper Bracklesham Beds (Eocene) of Sussex. Bulletin of the British Museum (Natural History), 13, 115 p.Google Scholar
Cheetham, A. H. 1971. Functional morphology and biofacies distribution of cheilostome Bryozoa in the Danian Stage (Paleocene) of southern Scandinavia. Smithsonian Contributions to Paleobiology, 6, 87 p.Google Scholar
Cheetham, A. H., and Thomsen, E. 1981. Functional morphology of arborescent animals: strength and design of cheilostome bryozoan skeletons. Paleobiology, 7:355383.CrossRefGoogle Scholar
Cheetham, A. H., Hayek, L. C., and Thomsen, E. 1981. Growth models in fossil arborescent cheilostome bryozoans. Paleobiology, 7:6886.CrossRefGoogle Scholar
Cook, P. L. 1965. Notes on some Polyzoa with conical zoaria. Cahiers de Biologie Marine, 6:435454.Google Scholar
Cook, P. L. 1966. Some “sand fauna” Polyzoa (Bryozoa) from eastern Africa and the northern Indian Ocean. Cahiers de Biologie Marine, 7:207223.Google Scholar
Cook, P. L. 1979. Mode of life of small, rooted “sand fauna” colonies of Bryozoa, p. 269282. In Larwood, G. P., and Abbott, M. B. (eds.), Advances in Bryozoology, Systematics Association Special Volume, 13. Academic Press, London.Google Scholar
Cook, P. L. 1981. The potential of minute bryozoan colonies in the analysis of deep sea sediments. Cahiers de Biologie Marine, 22:89106.Google Scholar
Cook, P. L., and Chimonides, P. J. 1978. Observations on living colonies of Selenaria (Bryozoa, Cheilostomata). I. Cahiers de Biologie Marine. 19:147158.Google Scholar
Cuffey, R. J. 1967. Bryozoan Tabulipora carbonaria in Wreford Megacyclothem (Lower Permian) of Kansas. Kansas University Paleontological Contributions, Bryozoa Article, 1, 96 p.Google Scholar
Gardiner, A. R., and Taylor, P. D. 1982. Computer modeling of branching growth in the bryozoan Stomatopora. Neus Jahrbuch für Geologie und Paläontologie Abhandlungen, 163:389416.Google Scholar
Gautier, Y. V. 1962. Recherchers écologiques sur les bryozoaoaires cheilostomes en Méditerannnée occidentale. Recueil des travaux de la station marine d'Endoume, 38:5434.Google Scholar
Gordon, D. P. 1987. The deep-sea Bryozoa of the New Zealand region, p. 97104. In Ross, J. R. P. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham, Washington.Google Scholar
Gordon, D. P. 1989. The marine fauna of New Zealand: Bryozoa: Gymnolaemata (Cheilostomida Ascophorina) from the western South Island continental shelf and slope. New Zealand Oceanographic Institute Memoir, 97, 158 p.Google Scholar
Hageman, S. J., Bone, Y., McGowran, B., and James, N. P. 1997. Bryozoan colonial growth forms as paleoenvironmental indicators: evaluation of methodology. Palaios, 12:405419.CrossRefGoogle Scholar
ageman, S. J., James, N. P., and Bone, Y. 1996. Carbonate sediment production from epizoic bryozoans on ephemeral substrates. Geological Society of America Abstracts with Programs, 28:A274.Google Scholar
Håkansson, E. 1975. Population structure of colonial organisms. A paleoecological study of some free-living Cretaceous bryozoans. Documents des Laboratories de Géologie de la Faculté des Sciences de Lyon, Hors Série 3:385399.Google Scholar
Hayward, P. J. 1985. Ctenostome Bryozoans. Synopsis of the British Fauna (New Series) 33, 169 p.Google Scholar
Herrera, A., and Jackson, J. B. C. 1996. Life history variation among “dominant” encrusting cheilostome Bryozoa, p. 117123. In Gordon, D. P., Smith, A. M., and Grant-Mackie, J. A. (eds.), Bryozoans in Space and Time. National Institute of Water, and Atmospheric Research Ltd, Wellington, New Zealand.Google Scholar
Jackson, J. B. C. 1979. Morphological strategies of sessile animals, p. 499555. In Larwood, G. P., and Rosen, B. R. (eds.), Biology and Systematics of Colonial Organisms. Academic Press, New York.Google Scholar
Jackson, J. B. C., and Coates, A. G. 1986. Life cycles and evolution of clonal (modular) animals. Philosophical Transactions of the Royal Society, London, Series B, 313:722.Google Scholar
Jackson, J. B. C., and McKinney, F. K. 1990. Ecological processes and progressive macroevolution of marine colonial benthos, p. 173209. In Ross, R. M., and Allmon, W. D. (eds.), Causes of Evolution, a Paleontological Perspective. University of Chicago Press, Chicago.Google Scholar
Karklins, O. L. 1983. Systematic descriptions for the Suborder Ptilodictyina, p. 489529. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa Revised. Geological Society of America and University of Kansas Press.Google Scholar
Lagaaij, R., and Gautier, Y. V. 1965. Bryozoan assemblages from marine sediments of the Rhone delta, France. Micropaleontology, 11:3958.CrossRefGoogle Scholar
Lidgard, S. 1985. Zooid and colony growth in encrusting cheilostome bryozoans. Palaeontology, 28:255291.Google Scholar
Lidgard, S., and Jackson, J. B. C. 1989. Growth in encrusting cheilostome bryozoans. I. Evolutionary trends. Paleobiology, 15:255282.Google Scholar
Lidgard, S., McKinney, F. K., and Taylor, P. D. 1993. Competition, clade replacement, and a history of cyclostome and cheilostome bryozoan diversity. Paleobiology, 19:352371.CrossRefGoogle Scholar
McKinney, F. K. 1983. Asexual colony multiplication by fragmentation: an important mode of genet longevity in the Carboniferous bryozoan Archimedes. Paleobiology, 9:3543.CrossRefGoogle Scholar
McKinney, F. K. 1986a. Historical record of erect bryozoan growth forms. Proceedings of the Royal Society of London, B 228:133149.Google Scholar
McKinney, F. K. 1986b. Evolution of erect marine bryozoan faunas: repeated success of unilaminate species. The American Naturalist, 128:95809.CrossRefGoogle Scholar
McKinney, F. K., and Jackson, J. B. C. 1989. Bryozoan Evolution. Unwin Hyman, Boston, 238 p.Google Scholar
McKinney, F. K., and Raup, D. M. 1982. A turn in the right direction: simulation of erect spiral growth in bryozoans Archimedes and Bugula. Paleobiology, 8:101112.CrossRefGoogle Scholar
Moissette, P. 1988. Faunes de Bryozoaires du Messin d'Algérie occdentale. In Documents des Laboratories de Géologie de Lyon, 102, 351 p.Google Scholar
Moissette, P. 1989. Interactions bryozoaires-sediment dans les environnmements actuels et fossiles. Géologie Méditeranéenne, 16:341353.CrossRefGoogle Scholar
Moissette, P. 1993. Bryozoan assemblages in Messinian deposits of western Algeria. Lethaia, 26:247259.CrossRefGoogle Scholar
Moissette, P., and Saint Martin, J. P. 1995. Bryozoaires des milieux récifaux miocènes du sillon sud-rifain au Maroc. Lethaia, 28:271283.CrossRefGoogle Scholar
Nelson, C. S., Hyden, F. M.Keane, S. L., Leask, W. L., and Gordon, D. P. 1988. Application of bryozoan zoarial growth form studies in facies analysis of non-tropical carbonate deposits in New Zealand. Sedimentary Geology, 60:301322.CrossRefGoogle Scholar
Prusinkiewicz, P., and Lindenmayer, A. 1990. The Algorithmic Beauty of Plants. Springer-Verlag, New York, 228 p.CrossRefGoogle Scholar
Rider, J., and Cowen, R. 1977. Adaptive architectural trends in encrusting ectoprocts. Lethaia, 10:2941.CrossRefGoogle Scholar
Rider, J., and Enrico, R. 1979. Structural and functional adaptations of mobile anascan ectoproct colonies (ectoproctoliths), p. 297320. In Larwood, G. P., and Abbott, M. B. (eds.), Advances in Bryozoology, Systematics Association Special Volume, 13. Academic Press, London.Google Scholar
Ryland, J. S., and Warner, G. F. 1986. Growth and form in modular animals: ideas on the size and arrangement of zooids. Philosophical Transactions of the Royal Society, London, Series B, 313:5376.Google Scholar
Schopf, T. J. M. 1969. Paleoecology of ectoprocts (bryozoans). Journal of Paleontology, 43:234244.Google Scholar
Schopf, T. J. M. 1973. Ergonomics of polymorphism, its relation to the colony as the unit of natural selection in species of the phylum Ectoprocta, p. 247294. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. (eds.), Animal Colonies. Development and Function Through Time. Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
Smith, A. M. 1995. Palaeoenvironmental interpretation using bryozoans: a review, p. 231243. In Bosence, D., and Allison, P. (eds.), Marine Palaeoenvironmental Analysis from Fossils. Geological Society Special Publication, 83.Google Scholar
Stach, L. W. 1935. Growth variation in Bryozoa Cheilostomata. The Annals and Magazine of Natural History 16 series 10, 645-647.CrossRefGoogle Scholar
Stach, L. W. 1936. Correlation of zoarial form with habitat. Journal of Geology, 44:6065.CrossRefGoogle Scholar
Stach, L. W. 1937. The application of Bryozoa in Cainozoic stratigraphy. Report of the Twenty-third Meeting of the Australian and New Zealand Association for the Advancement of Science, 23:8083.Google Scholar
Thompson, D. W. 1917. On Growth and Form. Cambridge University Press, Cambridge. 793 p.CrossRefGoogle Scholar
Todd, J. A. 1994. The role of bioimmuration in the exceptional preservation of fossil ctenostomes including a new Jurassic species of Buskia, p. 187192. In Hayward, P. J., Ryland, J. S., and Taylor, P. D. (eds.), Biology and Palaeobiology of Bryozoans. Olsen and Olsen, Fredensborg.Google Scholar
Utgaard, J. 1983. Paleobiology and taxonomy of the order Cystoporata, p. 327357. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa Revised. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Viskova, L. A. 1992. Marine post-Paleozoic Bryozoa. Rossiiskaia Akademia Nauk, Trudy Paleontologicheskogo Instituta, 250, 187 p.Google Scholar
Vogel, S. 1981. Life in Moving Fluids. The Physical Biology of Flow. Willard Grant Press, Boston. 352 p.Google Scholar
Voigt, E. 1956. Der Nachweis des Phytals durch Epizoen als Kriterium der Tiefe vorzeitlicher Meere. Geologische Rundschau, 45:97119.CrossRefGoogle Scholar
Voigt, E. 1973. Environmental conditions of bryozoan ecology of the hardground biotope of the Maastrichtian Tuff-Chalk, near Maastricht (Netherlands), p. 185197. In Larwood, G. P. (ed.), Living and Fossil Bryozoa. Academic Press, London and New York.Google Scholar
Wass, R. 1977. Branching patterns and phylogeny of the family Vittaticellidae (Bryozoa: Cheilostomata). Australian Journal of Zoology, 25:103119.CrossRefGoogle Scholar
Wass, R. 1991. Intracolonial variation in the cheilostome genera, Adeona and Adeonellopsis, p. 523529. In Bigey, F. P. and d'Hondt, J. L. (eds.), Bryozoaires Actuels et Fossiles: Bryozoa Living and Fossil. Bulletin de la Société des Sciences Naturelles de l'Ouest de la France, Mémoire HS 1.Google Scholar
Winston, J. E. 1977. Feeding in marine bryozoans, p. 233271. In Woollacott, R. M., and Zimmer, R. L. (eds.), Biology of Bryozoans. Academic Press, London.CrossRefGoogle Scholar
Winston, J. E. 1979. Current-related morphology and behaviour in some Pacific coast bryozoans, p. 247268. In Larwood, G. P., and Abbott, M. B. (eds.), Advances in Bryozoology, Systematics Association Special Volume, 13. Academic Press, London.Google Scholar
Winston, J. E. 1981. Feeding behavior of modern bryozoans, p. 121. In Broadhead, T. W. (ed.), Lophophorates: Notes for a Short Course. University of Tennessee Department of Geological Sciences Studies in Geology, 5.Google Scholar
Winston, J. E. 1983. Patterns of growth, reproduction and mortality in bryozoans from the Ross Sea, Antarctica. Bulletin of Marine Science, 33:688702.Google Scholar