Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-20T03:31:50.518Z Has data issue: false hasContentIssue false

Basal Cambrian microfossils from the Yangtze Gorges area (South China) and the Aksu area (Tarim block, northwestern China)

Published online by Cambridge University Press:  20 May 2016

Lin Dong
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, ,
Shuhai Xiao
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, ,
Bing Shen
Affiliation:
Department of Geosciences, Virginia Polytechnic Institute and State University, Blacksburg 24061, ,
Chuanming Zhou
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008
Guoxiang Li
Affiliation:
State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008
Jinxian Yao
Affiliation:
College of Life Sciences, Peking University, Beijing 100871, China

Abstract

The basal Cambrian marks the beginning of an important chapter in the history of life. However, most paleontological work on the basal Cambrian has been focused on skeletal animal fossils, and our knowledge about the primary producers—cyanobacteria and eukaryotic phytoplankton (e.g., acritarchs)—is limited. In this research, we have investigated basal Cambrian acritarchs, coccoidal microfossils, and cyanobacteria preserved in phosphorites and cherts of the Yanjiahe Formation in the Yangtze Gorges area (South China) and the Yurtus Formation in the Aksu area (Tarim Block, northwestern China). Our study confirms the occurrence in these two formations of small acanthomorphic acritarchs characteristic of the basal Cambrian Asteridium–Comasphaeridium–Heliosphaeridium (ACH) assemblage. These acritarchs include abundant Heliosphaeridium ampliatimi (Wang, 1985) Yao et al., 2005, common Yurtusia uniformis n. gen. and n. sp., and rare Comasphaeridium annulare (Wang, 1985) Yao et al., 2005. In addition, these basal Cambrian successions also contain the clustered coccoidal microfossil Archaeophycus yunnanensis (Song in Luo et al., 1982) n. comb., several filamentous cyanobacteria [Cyanonema majus n. sp., Oscillatoriopsis longa Timofeev and Hermann, 1979, and Siphonophycus robustum (Schopf, 1968) Knoll et al., 1991], and the tabulate tubular microfossil Megathrix longus L. Yin, 1987a, n. emend. Some of these taxa (e.g., H. ampliatum, C. annulare, and M. longus) have a wide geographic distribution but occur exclusively in basal Cambrian successions, supporting their biostratigraphic importance. Comparison between the stratigraphic occurrences of microfossils reported here and skeletal animal fossils published by others suggests that animals and phytoplankton radiated in tandem during the Cambrian explosion.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L. E., Peng, S., Geyer, G., and Shergold, J. H. 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geosciences Journal, 9:101106.CrossRefGoogle Scholar
Butterfield, N. J. 1997. Plankton ecology and the Proterozoic–Phanerozoic transition. Paleobiology, 23(2):247262.CrossRefGoogle Scholar
Butterfield, N. J. 2001. Ecology and evolution of Cambrian plankton, p. 200216. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34:184.Google Scholar
Cao, F. 1985. The new data of algal microfossils from the Sinian Doushantuo Formation. Bulletin, Tianjin Institute of Geology and Mineral Resources, 12:183193.Google Scholar
Chen, P. 1984. Discovery of Lower Cambrian small shelly fossils from Jijiapo, Yichang, west Hubei and its significance. Professional Papers of Stratigraphy and Palaeontology, 13:4966.Google Scholar
Cobbold, E. S. 1921. The Cambrian horizons of Comley (Shropshire) and their Brachiopoda, Pteropoda, Gastropoda, etc. Quarterly Journal of the Geological Society of London, 76:325386.CrossRefGoogle Scholar
Conway Morris, S. and Chapman, A. J. 1996. Lower Cambrian coeloscleritophorans (Ninella, Siphogonuchites) from Xinjiang and Shaanxi, China. Geological Magazine, 133:3351.CrossRefGoogle Scholar
Conway Morris, S. and Chapman, A. J. 1997. Lower Cambrian halkieriids and other coeloscleritophorans from Aksu-Wushi, Xinjiang, China. Journal of Paleontology, 71:622.CrossRefGoogle Scholar
Conway Morris, S., Crampton, J. S., Xiao, B., and Chapman, A. J. 1997. Lower Cambrian cambroclaves (incertae sedis) from Xinjiang, China, with comments on the morphological variability of sclerites. Palaeontology, 40: 167189.Google Scholar
Ding, L., Li, Y., and Chen, H. 1992. Discovery of Micrhystridium regulare from Sinian–Cambrian boundary strata in Yichang, Hubei, and its stratigraphic significance. Acta Micropalaeontologica Sinica, 9:303309.Google Scholar
Ding, W. and Qian, Y. 1988. Late Sinian to Early Cambrian small shelly fossils from Yangjiaping, Shimen, Hunan. Acta Micropalaeontologica Sinica, 5:3955.Google Scholar
Duan, C. and Xiao, B. 1992. Restudy on the stratotype of Yurtus Formation. Bulletin Tianjin Institute of Geology and Mineral Resources, 26–27:326355.Google Scholar
Fonin, V. D. and Smirnova, T. N. 1967. New group of problematic Early Cambrian organisms and methods of preparing them. Paleontological Journal, 2:718.Google Scholar
Gao, Z., Wang, W., Peng, C., Li, Y., and Xiao, B. 1985. The Sinian System in Aksu–Wushi Region, Xinjiang, China. Xinjiang People's Publishing House, Urumuqi, China, 184 p.Google Scholar
Golub, I. N. 1979. A new group of problematic microstructures in Vendian deposits of the Orshanka Basin (Russian Platform), p. 147155 (in Russian). In Sokolov, S. B. (ed.), Paleontologiya Dokembriya i Rannego Kembriya. Nauka, Leningrad.Google Scholar
Hermann, T. N. 1974. Findings of mass accumulations of trichomes in the Riphean, p. 610 (in Russian). In Timofeev, B. V. (ed.), Proterozoic and Paleozoic microfossils of the USSR. Nauka, Moscow.Google Scholar
Huntley, J. W., Xiao, S., and Kowalewski, M. 2006. 1.3 billion years of acritarch history: An empirical morphospace approach. Precambrian Research, 144:5268.CrossRefGoogle Scholar
Kirjanov, V. V. 1974. New acritarchs from the Cambrian deposits of Volhynia. Paleontologicheskij Zhurnal, 2:117130 (in Russian).Google Scholar
Knoll, A. H. 1984. Microbiotas of the late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. and Barghoorn, E. S. 1975. Precambrian eukaryotic organisms: A reassessment of the evidence. Science, 190:5254.CrossRefGoogle Scholar
Knoll, A. H. and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.CrossRefGoogle Scholar
Knoll, A. H., Javaux, E. J., Hewitt, D., and Cohen, P. 2006. Eukaryotic organisms in Proterozoic oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361:10231038.CrossRefGoogle ScholarPubMed
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: The Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.CrossRefGoogle ScholarPubMed
Liu, P., Xiao, S., Yin, C., Zhou, C., Gao, L., and Tang, F. 2008. Systematic description and phylogenetic affinity of tubular microfossils from the Ediacaran Doushantuo Formation at Weng'an, South China. Palaeontology, 51: 339366.CrossRefGoogle Scholar
Lo, S.-C. C. 1980. Microbial fossils from the lower Yudoma Suite, earliest Phanerozoic, eastern Siberia. Precambrian Research, 13:109166.CrossRefGoogle Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., and Ouyang, L. 1982. The Sinian–Cambrian Boundary in Eastern Yunnan, China. People's Publishing House of Yunnan, Kunming, Kunming, Yunnan, 265 p.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., Ouyang, L., Xing, Y., Liu, G., Zhang, S., and Tao, Y. 1984. Sinian–Cambrian Boundary Stratotype Section at Meishucun, Jinning, Yunnan, China. People's Publishing House of Yunnan, Kunming, Yunnan, 154 p.Google Scholar
Maithy, P. K. 1975. Micro-organisms from the Bushimay System (late precambrian) of Kanshi, Zaire. The Palaeobotanist, 22:133147.Google Scholar
Marshall, C. R. 2006. Explaining the Cambrian “explosion” of animals. Annual Review of Earth and Planetary Sciences, 34:355384.CrossRefGoogle Scholar
Martin, F. 1993. Acritarchs: A review. Biological Reviews, 68:475538.CrossRefGoogle Scholar
Membetov, A. M. and Repina, L. N. 1979. The Lower Cambrian of Talasskij Ala-Too and its correlation with the sections of Malyi Karatau and the Siberian Platform, p. 93138 (in Russian). In Zhuravleva, I. T. and Meshkova, N. P. (eds.), Biostratigraphy and palaeontology of the Lower Cambrian of Siberia. Nauka, Novosibirsk.Google Scholar
Missarzhevsky, V. V. 1969. Description of hyolithids, gastropods, hyolithelminths, camenides and forms of an obscure taxonomic position, p. 103175 (p. 127–205 in English translation). In Raaben, M. E. (ed.), The Tommotian Stage and the Cambrian Lower Boundary Problem. Akademiya Nauka SSSR, Moscow.Google Scholar
Missarzhevsky, V. V. 1973. Conodont-shaped organisms from Precambrian–Cambrian boundary strata of the Siberian Platform and Kazakhstan. Trudy Instituta Geologii i Geofiziki SO AN SSSR, 49:5357 (in Russian).Google Scholar
Missarzhevsky, V. V. and Mambetov, A. M. 1981. Stratigraphy and fauna of Cambrian and Precambrian boundary beds of Maly Karatau. Nauka, Moscow, p. 87 (in Russian).Google Scholar
Moczydlowska, M. 1991. Acritarch biostratigraphy of the Lower Cambrian and the Precambrian–Cambrian boundary in southeastern Poland. Fossils and Strata, 29:1127.Google Scholar
Moczydlowska, M. 1998. Cambrian acritarchs from Upper Silesia, Poland; biochronology and tectonic implications. Fossils and Strata, 46:1121.Google Scholar
Moczydlowska, M. 2001. Early Cambrian phytoplankton radiations and appearance of metazoans, p. 293296. In Peng, S., Babcock, L. E., and Zhu, M. (eds.), Cambrian System of South China (Palaeoworld No. 13). University of Science and Technology of China Press, Hefei.Google Scholar
Moczydlowska, M. 2002. Early Cambrian phytoplankton diversification and appearance of trilobites in the Swedish Caledonides with implications for coupled evolutionary events between primary producers and consumers. Lethaia, 35:191214.Google Scholar
Moczydlowska, M. and Zang, W.-L. 2006. The Early Cambrian acritarch Skiagia and its significance for global correlation. Palaeoworld, 15:328347.CrossRefGoogle Scholar
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystem. Annual Review of Earth and Planetary Sciences, 33:421442.CrossRefGoogle Scholar
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269309.CrossRefGoogle Scholar
Oehler, J. H. 1977. Precambrian microfossils and associated mineralisation in the McArthur deposit, Northern Territory, Australia. Alcheringa, 1:315349.CrossRefGoogle Scholar
Ogurtsova, R. N. and Sergeev, V. N. 1987. The microbiota of the upper Precambrian Chichkan Formation in the Lesser karatau region (southern Kazakhstan). Paleontological Journal, 1987:101112.Google Scholar
Peterson, K. J. and Butterfield, N. J. 2005. Origin of the Eumetazoa: testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proceedings National Academy of Sciences, USA, 102:95479552.CrossRefGoogle ScholarPubMed
Poulsen, C. 1967. Fossils from the Lower Cambrian of Borhholm. Danske Videnskaberns Selskab, Matematisk-Fysiske Meddelelser, 36:148.Google Scholar
Qian, J. and Xiao, B. 1984. An Early Cambrian small shelly fauna from Aksu–Wushi region, Xinjiang. Professional Papers of Stratigraphy and Palaeontology, 13:6590.Google Scholar
Qian, Y. 1978. The Early Cambrian hyolithids in central and south-west China and their stratigraphic al significance. Memoir Nanjing Institute of Geology and Palaeontology, Academia Sinica, 11:138.Google Scholar
Qian, Y. 1999. Taxonomy and Biostratigraphy of Small Shelly Fossils in China. Science Press, Beijing, 247 p.Google Scholar
Qian, Y., Chen, M., and Chen, Y. 1979. Hyolithids and other small shelly fossils from the Lower Cambrian Huangshandong Formation in the eastern part of the Yangtze Gorge. Acta Palaeontologica Sinica, 18(3):207232.Google Scholar
Qian, Y., Li, G., and Zhu, M. 2001. The Meishucunian Stage and its small shelly fossil sequence in China. Acta Palaeontologica Sinica, 40(supplement):5462.Google Scholar
Qian, Y. and Yin, G. 1984. Small shelly fossils from the lowest Cambrian in Guizhou. Professional Papers of Stratigraphy and Palaeontology, 13:91124.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, late Precambrian, central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W. and Blacic, J. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, Australia. Journal of Paleontology, 45:925960.Google Scholar
Sdzuy, K. 1969. Unter- und mittelkambrische Porifera (Chancelloriida und Hexactinellida). Paläeotologische Zeitschrift, 43:115147.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7:3653.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1992. Proterozoic–Early Cambrian diversification of metazoans and metaphytes, p. 553561. In Schopf, J. W. and Klein, C. (eds.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge.Google Scholar
Sergeev, V. N. 1989. Microfossils from transitional Precambrian–Phanerozoic strata of central Asia. Himalayan Geology, 13:269278.Google Scholar
Sergeev, V. N. and Ogurtsova, R. N. 1989. Microbiota of the Lower Cambrian phosphorite-bearing sediments of Malyi Karatau, southern Kazakhstan. Izvestiya Akademiya Nauk SSSR, Seriya Geologicheskaya, 3:5866 (in Russian).Google Scholar
Song, X. 1984. Obruchevella from the Early Cambrian Meishucunian Stage of the Meishucun section, Jinning, Yunnan, China. Geological Magazine, 121:179183.Google Scholar
Staplin, F. L., Jansonius, J., and Pocock, A. J. 1965. Evaluation of some acritarchous hystrichosphere genera. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 123:167201.Google Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M., and Erdtmann, B.-D. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254:6799.CrossRefGoogle Scholar
Timofeev, B. V. and Herman, T. N. 1979. Precambrian microbiota of the Lakhanda Formation, p. 137147 (in Russian). In Sokolov, B. S. (ed.), Paleontology of the Precambrian and Early Cambrian. Nauka, Leningrad.Google Scholar
Tiwari, M. 1999. Organic-walled microfossils from the Chert–phosphorite Member, Tal Formation, Precambrian–Cambrian Boundary, India. Precambrian Research, 97:99113.CrossRefGoogle Scholar
Valensi, L. 1948. Sur quelques microorganisms planctoniques des silex du Jurassique moyen du poitou et de Normandie. Bulletin de la Société Géologique de France 5 série, 18:537550.CrossRefGoogle Scholar
Valentine, J. W. 2004. On the Origin of Phyla. The University of Chicago Press, Chicago and London, 614 p.Google Scholar
Vidal, G. and MoczydlOwska-Vidal, M. 1997. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton. Paleobiology, 23:230246.CrossRefGoogle Scholar
Volkova, N. A. 1968. Acritarchs from the Precambrian and Lower Cambrian deposits of Estonia, p. 836. (in Russian). In Volkova, N. A., Zhuravleva, Z. A., Zabrodin, V. E., and Klinger, B. S. (eds.), Problematics of Riphean and Cambrian Strata of the Russian Platform, Urals and Kazakhstan. Nauka, Moscow.Google Scholar
Volkova, N. A. 1969. Acritarchs of the northwestern Russian Platform, p. 224236 (259–273 in English translation published in 1981). In Rozanov, A. Y., Missarzhevskii, V. V., Volkova, N. A., Voronova, L. C., Krylov, I. N., Keller, B. M., Korolyuk, I. K., Lendzion, K., Michniak, R., Pykhova, N. G., and Sidarov, A. D. (eds.), The Tommotian Stage and the Cambrian Lower Boundary Problem. Nauka, Moscow.Google Scholar
Walcott, C. D. 1920. Cambrian Geology and Paleontology IV: Middle Cambrian Spongiae. Smithsonian Miscellaneous Collections, 67:261364.Google Scholar
Wang, F. 1985. Middle-upper Proterozoic and lowest Phanerozoic microfossil assemblages from SW China and contiguous areas. Precambrian Research, 29:3343.CrossRefGoogle Scholar
Wang, F., Zhang, X., and Guo, R. 1983. The Sinian microfossils from Jinning, Yunnan, Southwest China. Precambrian Research, 23:133175.Google Scholar
Xiao, B. and Duan, C. 1992. Review of small shelly fauna of Yultus, Early Cambrian of Xinjiang. Xinjiang Geology, 10:213232.Google Scholar
Xiao, S., Yuan, X., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences, USA, 97:1368413689.CrossRefGoogle ScholarPubMed
Xing, Y., Ding, Q., Luo, H., He, T., and Wang, Y. 1984. The Sinian–Cambrian boundary of China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 10:1262.Google Scholar
Xue, Y., Tang, T., and Yu, C. 1992. Discovery of the oldest skeletal fossils from upper Sinian Doushantuo Formation in Weng'an, Guizhou, and its significance. Acta Palaeontologica Sinica, 31:530539.Google Scholar
Yao, J., Xiao, S., Yin, L., Li, G., and Yuan, X. 2005. Basal Cambrian microfossils from the Yurtus and Xishanblaq formations (Tarim, north-west China): Systematic revision and biostratigraphic correlation of Micrhystridium-like acritarchs from China. Palaeontology, 48:687708.CrossRefGoogle Scholar
Yin, C., Gao, L., and Xing, Y. 2003. Silicified microfossils from the Early Cambrian Tianzhushan Member near Miaohe village, Zigui, west Hubei, China. Acta Palaeontologica Sinica, 42:7688.Google Scholar
Yin, C., Yue, Z., Gao, L., and Ding, Q. 1992. Microfossils from the cherts of the Lower Cambrian Shuijingtuo Formation at Miaohe, Zigui, Hubei Province. Acta Geologica Sinica, 66:371380.Google Scholar
Yin, L. 1986. Sinian microfossil plants from the Yangtze Gorges region. Journal of Stratigraphy, 10:262269.Google Scholar
Yin, L. 1987a. Microbiotas of latest Precambrian sequences in China, p. 415494. In Nanjing Institute of Geology and Palaeontology Academica Sinica (ed.), Stratigraphy and Palaeontology of Systemic Boundaries in China: Precambrian–Cambrian Boundary (1). Nanjing University Press, Nanjing.Google Scholar
Yin, L. 1987b. New data of microfossils from Precambrian–Cambrian cherts in Ningqiang, southern Shaanxi. Acta Palaeontologica Sinica, 26:187195.Google Scholar
Yin, L. 1995. Early Ordovician acritarchs from Hunjiang region, Jilin and Yichang region, Hubei, China; Palaeontologica Sinica, Volume 185, New Series A. Number 12, 170 p.Google Scholar
Yin, L. 1997. Precambrian–Cambrian transitional acritarch biostratigraphy of the Yangtze Platform. Bulletin of National Museum of Natural Science (Taipei), 10:217231.Google Scholar
Yuan, X. and Hofmann, H. J. 1998. New microfossils from the Neoproterozoic (Sinian) Doushantuo Formation, Weng'an, Guizhou Province, southwestern China. Alcheringa, 22:189222.Google Scholar
Yuan, X., Wang, Q., and Zhang, Y. 1993. Late Precambrian Weng'an Biota from Guizhou, southwest China. Acta Micropalaeontologica Sinica, 10: 409420.Google Scholar
Yue, Z. and Gao, L. 1992. Paleontology, biostratigraphy and geological significance of the early Cambrian proto-conodonts and other skeletal microfossils from Aksu-Wushi region, Xinjiang, China. Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, 23:133155.Google Scholar
Yue, Z. and Gao, L. 1994. A new Early Cambrian species of Tannuolina from Xinjiang region, China. Professional Papers of Stratigraphy and Palaeontology, 24:6678.Google Scholar
Yue, Z. and He, S. 1989. Early Cambrian conodonts and bradoriids from Zhejiang. Acta Micropalaeontologica Sinica, 6:289300.Google Scholar
Zhang, Y. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. Journal of Paleontology, 55:485506.Google Scholar
Zhang, Y., Yin, L., Xiao, S., and Knoll, A. H. 1998. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. The Paleontological Society, Memoir, 50:152.Google Scholar
Zhang, Z. 1985. Coccoid microfossils from the Doushantuo Formation (Late Sinian) of South China. Precambrian Research, 28:163173.CrossRefGoogle Scholar
Zhou, C., Yuan, X., Xiao, S., Chen, Z., and Xue, Y. 2004. Phosphatized fossil assemblage from the Doushantuo Formation in Baokang, Huibei Province. Acta Micropalaeontologica Sinica, 21:349366.Google Scholar
Zhou, C., Xie, G., Mcfadden, K., Xiao, S., and Yuan, X. 2007. The diversification and extinction of Doushantuo-Pertatataka acritarchs in South China: Causes and biostratigraphic significance. Geological Journal, 42:229262.Google Scholar