Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-05T12:47:31.222Z Has data issue: false hasContentIssue false

Automobility in Tabulata, Rugosa, and extant scleractinian analogues: Stratigraphic and paleogeographic distribution of Paleozoic mobile corals

Published online by Cambridge University Press:  20 May 2016

Yves Plusquellec
Affiliation:
Laboratoire de Paleontologie et Stratigraphie du Paleozoique, et UMR, 6538 du CNRS, Domaines Oceaniques, Université de Bretagne Occidentale, U.F.R. Sciences et Techniques, 6 Avenue Le Gorgeu, BP809, 29285 BREST CEDEX, France
Gregory E. Webb
Affiliation:
Department of Earth Sciences, University of Queensland, Brisbane, QLD 4072, Australia,
Bert W. Hoeksema
Affiliation:
National Museum of Natural History, P.O. Box 9517, 2300 RA Leiden, The Netherlands,

Abstract

Freeliving corals capable of automobility (e.g., lateral migration) were rare during Paleozoic time, but some species within the tabulate genera Procterodictyum, Procteria (Granulidictyum), P. (Pachyprocteria), Palaeacis and Smythina, and the rugose genera Combophyllum, and Baryphyllum, have morphologic characters that suggest they were capable of such self-directed movement. The rugose corals Gymnophyllum and Hadrophyllum, sensu stricto may have exhumed and righted themselves. No single morphological character is diagnostic for an automobile habit, but the following characters appear to be important indicators: 1) lack of an external attachment surface; 2) concentric skeletal accretion; 3) discoid corallum shape; 4) concavo-convex, plano-convex, and, less commonly, biconvex corallum profile; and 5) small, lightweight corallum. Additionally, the occurrence of corallites on the base of the corallum (hypocorallites) is a good indicator of automobility in freeliving corals, but the character is so far known only in Procterodictyum. All known fossil automobile taxa appear to have inhabited relatively quiet environments on muddy or silty, soft substrates.

The earliest known automobile corals were early Emsian (Devonian) Procterodictyum. Paleozoic automobile corals were most abundant during Devonian time, with Procterodictyum, Procteria (Granulidictyum), and Combophyllum distributed in a narrow longitudinal band in the southern hemisphere on both sides of the Rheic Ocean. Carboniferous and Permian automobile taxa (Palaeacis partim, Smythina and Baryphyllum) were less diverse, but more cosmopolitan. Throughout Paleozoic time, the vast majority of automobile corals was confined to within 40 degrees of the paleoequator. However, additional research will be required before coral automobility can be used to constrain paleolatitude independently.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, N. 1939. Migration and righting reaction of the coral, Fungia actiniformis var. palawensis Döderlein. Palao Tropical Biological Station Studies, 4:671694.Google Scholar
Bambach, R. K. 1990. Late Paleozoic provinciality in the marine realm, p. 307323. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Bassler, R. S. 1937. The Paleozoic rugose coral family Paleocyclidae. Journal of Paleontology, 11:189201.Google Scholar
Belasky, P. 1992. Assessment of sampling bias in biogeography by means of a probabilistic estimate of taxonomic diversity: application to modern Indo-Pacific reef corals. Palaeogeography, Palaeoclimatology, Palaeoecology, 99:243270.CrossRefGoogle Scholar
Benedetto, J. L., Sanchez, T. M., and Brussa, E. D. 1992. Las cuencas silúricas de América Latina, p. 119148. In Gutierrez Marco, J. C., Saavedra, J., and Rabano, I. (eds.), Paleozoico Inferior de Iberoamérica. Universidad de Extremadura, Badejoz.Google Scholar
Best, M. B., and Hoeksema, B. W. 1987. New observations on scleractinian corals from Indonesia. 1. Free-living species belonging to the Faviina. Zoologische Mededelingen, 61:387403.Google Scholar
Birenheide, R., and Soto, F. M. 1977. Rugose corals with wall-free apex from the Lower Devonian of the Cantabrian Mountains, Spain. Senckenbergiana Lethaea, 58:123.Google Scholar
Boschma, H. 1922. On budding and coalescence of buds in Fungia fungites and Fungia actiniformis . Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, 24:257268.Google Scholar
Brett, C. E., and Cottrell, J. F. 1982. Substrate specificity in the Devonian tabulate coral Pleurodictyum . Lethaia, 15:247262.Google Scholar
Cairns, S. D. 1982. Antarctic and subantarctic Scleractinia. Antarctic Research Series, 34, 74 p.Google Scholar
Cairns, S. D. 1988. Asexual reproduction in solitary Scleractinia. Proceedings of the 6th International Coral Reef Symposium, Australia, 1988, 2:641646.Google Scholar
Cairns, S. D. 1989. A revision of the ahermatypic Scleractinia of the Philippine Islands and adjacent waters, Pt. 1, Fungiacyathidae, Microbaciidae, Turbinoliinae, Guyniidae, and Flabellidae. Smithsonian Contributions to Zoology, 486, 136 p.Google Scholar
Cairns, S. D. 1994. Scleractinia of the temperate North Pacific. Smithsonian Contributions to Zoology, 557, 150p.Google Scholar
Cairns, S. D. 1997. A generic revision and phylogenetic analysis of the Turbinoliidae. Smithsonian Contributions to Zoology, 591, 55 p.Google Scholar
Cairns, S. D. and Keller, N. B. 1993. New taxa and distributional records of azooxanthellate Scleractinia (Cnidaria, Anthozoa) from the tropical south-west Indian Ocean, with comments on their zoogeography and ecology. Annals of the South African Museum, 103:213292.Google Scholar
Chadwick, N. E. 1988. Competition and locomotion in a free-living fungiid coral. Journal of Experimental Marine Biology and Ecology, 133:189200.Google Scholar
Chadwick-Furman, N., and Loya, Y. 1992. Migration, habitat use, and competition among mobile corals (Scleractinia: Fungiidae) in the Gulf of Eilat, Red Sea. Marine Biology, 114:617623.Google Scholar
Chudinova, I. I. 1976. Pervaya nakhodka Palaeacis (Tabulata) v karbone Verkhoyan'ya. Paleontologicheski Zhurnal, 1976(3):3035. (In Russian) Google Scholar
Clarke, J. M. 1921. Organic dependence and disease: their origin and significance. New York State Museum Bulletin, 221/222, 113 p.Google Scholar
Clausen, C. 1971. Interstitial Cnidaria: present status of their systematics and ecology. Smithsonian Contributions to Zoology, 76:18.Google Scholar
Cook, P. L., and Chimonides, P. S. 1978. Observations on living colonies of Selenaria (Bryozoa, Cheilostomata). Cahiers de Biologie Marine, Roscoff, 19:147158.Google Scholar
Davis, W. J. 1887. Kentucky corals—a monograph of the fossil corals of the Silurian and Devonian rocks of Kentucky, Pt. II, Kentucky Geological Survey, 1885:4 p., 139 pls.Google Scholar
Dullo, W. C., and Hecht, C. 1990. Corallith growth on submarine alluvial fans. Senckenbergiana Maritima, 21:7786.Google Scholar
Ettensohn, F. R. 1980. Paragassizocrinus: systematics, phylogeny and ecology. Journal of Paleontology, 54:9781007.Google Scholar
Fabricius, F. 1964. Aktive Lage- und Ortsveränderung bei der Koloniekoralle Manicina areolata und ihre paläoökologische Bedeutung. Senckenbergiana Lethaea, 45:299323.Google Scholar
Fisk, D. A. 1981. Sediment shedding and particulate feeding in two free-living, sediment-dwelling corals (Heteropsammia cochlea and Heterocyathus aequicostatus) at Wistari Reef Great Barrier Reef. Proceedings of the 4th International Coral Reef Symposium, Manila, 2:2126.Google Scholar
Flügel, H. 1972. Die paläozoischen korallenfaunen Ost-Irans. 2. Rugosa und Tabulata der Jamal-Formation (Darwasian?, Perm). Jahrbuch Geologische Bundesanstalt, 115:49102.Google Scholar
Flügel, H. 1973. Rugose korallen aus dem oderen Perm Ost-Grönlands. Verhandlungen Geologische Bundesanstalt, 1:157.Google Scholar
Fuchs, G., and Plusquellec, Y. 1982. Pleurodictyum problematicum Goldfuss 1829 (Tabulata, Dévonien) statut, morphologie, ontogénie. Geologica et Palaeontologica, 15:126.Google Scholar
García-López, S., and Fernández Martínez, E. 1993 [1995]. The genus Parastriatopora Sokolov, 1949 (Tabulata) in the Lower Devonian of Argentina: palaeobiogeographic implications. Geobios 28/2:175183.Google Scholar
Gerth, H. 1921. Die Anthozoën der Dyas von Timor. Paläontologie von Timor, 9:65147.Google Scholar
Gerth, H. 1952. Die von Sipunculiden bewohnten lebenden und jungtertiären Korallen und der wurmformige Körper von Pleurodictyum . Paläontologishe Zeitschrift, 25:119126.Google Scholar
Gill, G. A., and Coates, A. G. 1977. Mobility, growth patterns and substrate in some fossil and Recent corals. Lethaia, 10:119134.CrossRefGoogle Scholar
Gill, G. A., and Semenoff-Tian-Chansky, P. 1971. Analogie entre la structure du squelette chez les coraux Combophyllum (Dévonien) et Chomatoceris (Jurassique), en relation avec leur mode de vie. C. R. Hebdomadaires des Seances de L'Academie des Sciences, Paris (D), 273:4950.Google Scholar
Glynn, P. W. 1974. Rolling stones among the Scleractinia: mobile coralliths in the Gulf of Panama. Proceedings of the Second International coral Reef Symposium, 2:183198.Google Scholar
Goldfuss, G. A. 1826-1833. Petrefacta Germaniae, I. Arnz & Co., Düseldorf, 252 p.Google Scholar
Golonka, J., Ross, M. I., and Scotese, C. R. 1994. Phanerozoic paleogeographic and paleoclimatic modeling maps, p. 147. In Embry, A. F., Beauchamp, B., and Glass, D. J. (eds.), Pangea: Global Environments and Resources. Canadian Society of Petroleum Geologists Memoir 17.Google Scholar
Goreau, T. F., and Yonge, C. M. 1968. Coral community on muddy sand. Nature, 217:421423.CrossRefGoogle Scholar
Guillocheau, F. 1980. Mise en évidence d'une séquence à petite échelle résultant de l'action de vagues de tempête dans la Formation de Tibidy (Mesodévonien, Finistère, Massif Armoricain). C. R. Hebdomadaires des Séances de L'Académie des Sciences, Paris, (D), 290:14471450.Google Scholar
Guillocheau, F. 1991. Modalités d'empilement des séquences génétiques dans un bassin de plate-forme (Dévonien Armoricain): nature et distorsion des différents ordres de séquences de dépôts emboîtées. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 15:383410.Google Scholar
Hoeksema, B. W. 1988. Mobility of free-living fungiid corals (Scleractinia), a dispersion mechanism and survival strategy in dynamic reef habitats. Proceedings of the 6th International Coral Reef Symposium, Australia, 1988, 2:715720.Google Scholar
Hoeksema, B. W. 1989. Taxonomy, phylogeny and biogeography of mushroom corals (Scleractinia: Fungiidae). Zoologische Verhandelingen, Leiden, 254:1295.Google Scholar
Hoeksema, B. W. 1993. Phenotypic corallum variability in Recent mobile reef corals. Courier Forschungsinstitut Senckenberg, 164:263272.Google Scholar
Hoeksema, B. W., and Best, M. B. 1991. New observations on scleractinian corals from Indonesia. 2. Sipunculan-associated species belonging to the genera Heterocyathus and Heteropsammia . Zoologische Mededelingen, Leiden 65:221245.Google Scholar
Hoeksema, B. W., and Moka, W. 1989. Species assemblages and phenotypes of mushroom corals (Fungiidae) related to coral reef habitats in the Flores Sea. Netherlands Journal of Sea Research, 23:149160.Google Scholar
Horridge, G. A. 1957. The co-ordination of the protective retraction of coral polyps. Philosophical Transactions of the Royal Society of London, series B, 240:495528.Google Scholar
Howell, B. F. 1945. New Pennsylvanian palaeocyclid coral from Oklahoma. Wagner Free Institute of Science, Philadelphia, Bulletin, 20:14.Google Scholar
Hubbard, J. A. E. B. 1972. Diaseris distorta, an “acrobatic” coral. Nature, 236:457459.Google Scholar
Hubbard, J. A. E. B., and Pocock, Y. P. 1972. Sediment rejection by recent scleractinian corals: a key to palaeo-environmental reconstruction. Geologische Rundschau, 61:598626.Google Scholar
Isaacson, P. E., Antelo, B., and Boucot, A. J. 1976. Implications of a Llandovery (Early Silurian) brachiopod fauna from Salta Province, Argentina. Journal of Paleontology, 50:11031112.Google Scholar
Jokiel, P. L., and Cowdin, H. P. 1976. Hydromechanical adaptation in the solitary free-living coral Fungia scuturia . Nature, 262:212213.Google Scholar
Kase, T. 1986. Mode of life of the Silurian uncoiled gastropod Semitubina sakoi n. sp. from Japan. Lethaia, 19:327337.Google Scholar
Keller, N. B. 1977. Novye vidy roda Leptopenus i nekotorye osobennosti glubokobodnykh agermatipnykh korallov. Trudy Institut Okeanologii, 99:3144.Google Scholar
Laborel, J. 1969-1970. Madréporaires et hydrocoralliaires récifaux des cotes Brésiliennes, systématique, écologie, répartition verticale et géographique. Annales de l'Institut Oceanographique, Monaco, 47:171272.Google Scholar
Lee, D.-J., and Noble, J. P. A. 1990. Reproduction and life strategies in the Paleozoic tabulate coral Paleofavosites capax (Billings). Lethaia, 23:257272.Google Scholar
Lewis, J. B. 1989. Spherical growth in the Caribbean coral Siderastraea radians (Pallas) and its survival in disturbed habitats. Coral Reefs, 7:161167.Google Scholar
Marshall, S. M., and Orr, A. P. 1931. Sedimentation on Low Isles Reef and its relation to coral growth. Great Barrier Reef Expedition 1928-1929, Scientific Reports, 1/5:93133.Google Scholar
Meek, F. B., and Worthen, A. H. 1868. Geology and paleontology. Illinois Geological Survey, 3:289574.Google Scholar
Milne-Edwards, H. 1857. Histoire naturelle des coralliaires ou polypes proprement dits. Atlas. Roret, Paris, 11 p., 31 pl.Google Scholar
Milne-Edwards, H., and Haime, J. 1850. A monograph of the British fossil corals. First Part. Introduction. Palaeontographical Society Monograph, London, 71 p.Google Scholar
Moore, R. C., and Jeffords, R. M. 1945. Description of Lower Pennsylvanian corals from Texas and adjacent states. University of Texas Publication, 4401:77208.Google Scholar
Neuman, B. E. E. 1988. Some aspects of life strategies of early Palaeozoic rugose corals. Lethaia, 21:97114.CrossRefGoogle Scholar
Nicholson, H. A. 1874. On Duncanella, a new genus of Palaeozoic corals. Annals and Magazine of Natural History, ser. 4, 13:333335.Google Scholar
Nicholson, H. A. 1888. On the structure of Cleistopora (Michelinia) geometrica Edwards & Haime, sp. Geological Magazine, dec. 3, 5:150152.Google Scholar
Nishihira, M., and Poung-In, S. 1989. Distribution and population structure of a free-living coral Diaseris fragilis, at Khang Khao Island in the Gulf of Thailand. Galaxea, 8:271282.Google Scholar
Nowinski, A. 1976. Tabulata and Chaetetida from the Devonian and Carboniferous of southern Poland. Palaeontologia Polonica, 35:1125.Google Scholar
Oczlon, M. S. 1990. Ocean currents and unconformities: the North Gondwana Middle Devonian. Geology, 18:509512.Google Scholar
Oczlon, M. S. 1994. North Gondwana origin for exotic Variscan rocks in the Rhenohercynian zone of Germany. Geologische Rundschau, 83:2031.CrossRefGoogle Scholar
Oliver, W. A. Jr. 1980. Corals in the Malvinokaffric realm. Münstersche Forschungen zur. Geologie und Paläontologie, 52:1327.Google Scholar
Oliver, W. A., Merriam, C. W., and Churkin, M. Jr. 1975. Ordovician, Silurian, and Devonian corals of Alaska. U.S. Geological Survey Professional Paper 823-B, 44 p.Google Scholar
Owens, J. M. 1984a. Microstructural changes in the Micrabaciidae and their ecologic and systematic implications. Palaeontographica Americana, 54:519522.Google Scholar
Owens, J. M. 1984b. Evolutionary trends in the Micrabaciidae: an argument in favor of preadaptation. Geologos, 11:8793.Google Scholar
Pardo Alonso, M. V., and García-Alcalde, J. L. 1996. El Devónico de la zona centroibérica. Revista Española de Paleontología, No. Extraordinario, p. 7281.Google Scholar
Paris, F., and Robardet, M. 1990. Early Palaeozoic palaeobiogeography of the Variscan regions. Tectonophysics, 177:192213.Google Scholar
Pedder, A. E. H., and Oliver, W. A. Jr. 1990. Rugose coral distribution as a test of Devonian palaeogeographic models, p. 267275. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Pichon, M. 1974. Free living scleractinian coral communities in coral reefs of Madagascar. Proceedings of the Second International Coral Reef Symposium, 2:173181.Google Scholar
Plusquellec, Y. 1970. De quelques Procteria (Tabulata) Devoniens. Société Géologique et Minéralogique de Bretagne, Bulletin, serie C, 1:5970.Google Scholar
Plusquellec, Y. 1980. Microstructure et mode de croissance de Adradosia Birenheide et Soto 1977 (Tétracoralliaire, Dévonien). Societé Géologique de France, Bulletin, 12:359368.CrossRefGoogle Scholar
Plusquellec, Y. 1987. Révision de Michelinia transitoria Knod, 1908 (Tabulata, Dévonien de Bolivie). Annales de la Société Géologique du Nord, 105:249252.Google Scholar
Plusquellec, Y. 1993. Un tabulé pleurodictyforme “biface” Procterodictyum n. gen. (Emsien du Nord Gondwana). Geologica et Palaeontologica, 7:103121.Google Scholar
Plusquellec, Y., and Jahnke, H. In press. Les Tabulés de L'Erbslochgrauwacke (Emsiaen inferieur du Kellerwald) et le probleme des affinités paléogéographiques de l'allchtone “Giessen-Harz.” Abhandlungen der Geologisches Bundesanstalt, Wein.Google Scholar
Plusquellec, Y., Lafuste, J., and Webb, G. E. 1990. Organisation de type tétracoralliaire des rides septales de Palaeacis (Cnidaria, Carbonifère). Lethaia, 23:385397.Google Scholar
Robardet, M., Blaise, J., Bouyx, E., Gourvennec, R., Lardeux, H., Le Hérissé, A., Le Menn, J., Melou, M., Paris, F., Plusquellec, Y., Poncet, J., Régnault, S., Rioult, M., and Weyant, M. 1993. Paléogéographie de l'Europe occidentale de l'Ordovicien au Dévonien. Bulletin de la Société géologique de France, 164:683695.Google Scholar
Rosen, B. R., and Taylor, J. D. 1969. Reef coral from Aldabra: new mode of reproduction. Science, 166:119121.Google Scholar
Rossi, L. 1962. Morfolgia e reproduzione vegetativa di un Madraporario nuovo per il Mediterraneo. Bolletino di Zoologia, 28:261272.Google Scholar
Schindewolf, O. H. 1960. Über Lebensgeneinschaften von Würmer und Korallen. Natur und Volk, 90:110.Google Scholar
Schlüter, C. 1889. Anthozoen des Rheinische Mittel Devon. Abhandlungen Geologische Specialkarte von Preussen und den Thüringischen Staaten, VIII, 4:1207.Google Scholar
Schuhmacher, H. 1977. Ability in fungiid corals to overcome sedimentation. Proceedings of the Third International Coral Reef Symposium, 1:503509.Google Scholar
Scoffin, T. P., Stoddart, D. R., Tudhope, A. W., and Woodroffe, C. 1985. Rhodoliths and coralliths of Muri Lagoon, Rarotonga, Cook Islands. Coral Reefs, 4:7180.Google Scholar
Scotese, C. R., Bambach, R. K., Barton, C., Van Der Voo, R., and Ziegler, A. M. 1979. Paleozoic base maps. Journal of Geology, 87:217227.Google Scholar
Scotese, C. R, and McKerrow, W. S. 1990. Revised world maps and introduction, p. 121. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Scrutton, C. T. 1996. Ecophenotypic variation in the early Silurian rugose coral Palaeocyclus porpita . Proceedings of the Yorkshire Geological Society, 51:18.Google Scholar
Scrutton, C. T. 1998. The Palaeozoic corals, II, Structure, variation and palaeoecology. Proceedings of the Yorkshire Geological Society, 52:157.Google Scholar
Smyth, L. B. 1933. On certain Carboniferous corals with epithecal scales. Proceedings of the Royal Irish Academy, 41(B):171178.Google Scholar
Soto, F. 1978. Crassicyclus n. gen. (Coelenterata, Rugosa) del Devonico de la Cordillera Cantabrica (NW España). Trabajos de Geologia, Oviedo Universidad, Facultad de Ciencias, 10:425436.Google Scholar
Squires, D. F. 1964. Biological results of the Chatham Island 1954 expedition, Pt. 6, Scleractinia. Memoir of the New Zealand Oceanographic Institute, 29, 31 p.Google Scholar
Squires, D. F. 1967. The evolution of the deep-sea coral family Micrabaciidae. Studies in Tropical Oceanography, 5:502510.Google Scholar
Stolarski, J. 1992. Transverse division in a Miocene scleractinian coral. Acta Palaeontologica Polonica, 36:413426.Google Scholar
Sutherland, P. K., and Haugh, B. N. 1969. The discoid rugose coral Gymnophyllum: growth form and morphology, p. 2742. In Campbell, K. S. W. (ed.), Stratigraphy and Paleontology: Essays in Honour of Dorothy Hill. Australian National University Press, Canberra.Google Scholar
Swedmark, B. 1964. The interstitial fauna of marine sand. Biological Reviews, 39:142.Google Scholar
Tourneur, F. In press. Tabulés Dinantiens du sud-ouest du Portugal. Geologica Belgica, 1.Google Scholar
Veron, J. E. N. 1986. Corals of Australia and the Indo-Pacific. Angus & Robertson, North Ryde, New South Wales, 644 p.Google Scholar
Veron, J. E. N. 1993. A biogeographic database of hermatypic corals. Australian Institute of Marine Sciences Monograph Series, 103, 433p.Google Scholar
Webb, G. E. 1993. Skeletal microstructure and mode of attachment in Palaeacis species (Anthozoa: Tabulata) from the Mississippian and Pennsylvanian of northeastern Oklahoma and northwestern Arkansas. Journal of Paleontology, 67:167178.Google Scholar
Webb, G. E. 1994. Benthic auto-mobility in discoid Palaeacis from the Pennsylvanian of the Ardmore Basin, Oklahoma? Journal of Paleontology, 68:223233.Google Scholar
Wells, J. W. 1966. Evolutionary development in the scleractinian family Fungiidae, p. 223246. In Rees, W. J. (ed.), The Cnidaria and Their Evolution. Symposia of the Zoological Society of London, 16.Google Scholar
Wensinck, H., and Hartosukohardjo, S. 1990. The paleomagnetism of Late Permian-Early Triassic and Late Triassic deposits on Timor: an Australian origin? Geophysical Journal International, 101:315328.Google Scholar
Weyer, D. 1970. Granulidictyum Schindewolf, 1959 (Anthozoa, Tabulata) im Unterdevon des Thüringer Schiefergebirges. Geologie, 19(9):11151121.Google Scholar
Weyer, D. 1973. Einige rugose korallen aus der Erbslochgrauwacke (Unterdevon) des Unterharzes. Zeitschrift für Geologische Wissenschaften, 1973(1):4565.Google Scholar
Weyer, D. 1976. Eine bemerkenswerte Cladochonus—kolonie (Anthozoa, Tabulata) aus dem Kulm-Touschiefer (Unterkarbon, Obervisé) von Aprath im Reinischen Schiefergebirge. Zeitschrift für Geologische Wissenschaften, 1976(11):15151530.Google Scholar
Weyer, D. 1982. Das Rugosa-Genus Duncanella Nicholson 1874 (Anthozoa, Silur-Devon). Abhandlungen und Berichte für Naturkunde und Vergeschichte, 12/5:2952.Google Scholar
Williams, G. C. 1986. What are corals? Sagittarius, 1(2):1115.Google Scholar
Wilson, J. B. 1976. Attachment of the coral Caryophyllia smithii S. & B. to tubes of the polychaete Ditrupa arietina (Müller) and other substrates. Journal of the Marine Biological Association of the United Kingdom. 56:291303.Google Scholar
Yamashiro, H., and Nishihira, M. 1995. Phototaxis in Fungiidae corals (Scleractinia). Marine Biology, 124:461465.Google Scholar
Yu, C.-M., and Cai, Z.-Q. 1983. Early Middle Devonian rugose corals from the Lure Formation of Diebu in Gansu Province. Gansu Geology, 1, 77 p.Google Scholar
Zibrowius, H. 1980. Les Scléractiniaires del la Méditerranée et de l'Atlantique nord-oriental. Mémoires de l'Institut océanographique, Monaco, 11, 284 p.Google Scholar
Zibrowius, H. 1998. A new type of symbiosis: Heterocyathus japonicus (Cnidaria: Scleractinia) living on Fissidentalium vernederi (Mollusca: Scaphopoda). Zoologische Verhandelingen, Leiden, 323:319340.Google Scholar