Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T03:57:43.010Z Has data issue: false hasContentIssue false

Aristocystites, a recumbent diploporid (Echinodermata) from the Middle and Late Ordovician of Bohemia, ČSSR

Published online by Cambridge University Press:  14 July 2015

Ronald L. Parsley*
Affiliation:
Department of Geology, Tulane University, New Orleans, Louisiana 70118

Abstract

The Ordovician diploporid Aristocystites Barrande lived recumbently on the seafloor but never evolved marginal frame plates or flexible tesselated surfaces. Flume studies on 1:1 scale models clearly indicate that this genus lived attached by an aboral holdfast with the aboral end of the theca facing into the current. The oral end, with its paired brachioles, fed in vortices generated in the lee of the theca. Optical current velocities for feeding probably ranged from 6 to 18 cm/sec. Growth of thecal plates and diplopore structures originated in galleried stereom. Secondary thickening occurred by growth of labyrinthine stereom. Aristocystites probably pressurized its gut as is suggested by the massive anal pyramid. Peristaltic waves through the gut would have enhanced body-fluid circulation and circulation through the diplopores. Aristocystites shows no signs of simplification in the ambulacral area. The transversely oriented, bilateral, ambulacral system is considered to be primitive. Other species synonymized with Aristocystites bohemicus Barrande from the Caradocian Zahořany Beds of Bohemia are A. desideratus, A. grandisculum, A. idealis, and A. rudis. Aristocystites metroi Parsley and Prokop, n. sp., is described from the upper Zahořany shale facies and the Bohdalec Formation from the Prague area.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrande, J. 1887. Systěme silurien du centre de la Bohěme. Cystidées, 7:1, Prague and Paris, 233 p.Google Scholar
Billings, E. 1858. Figures and description of Canadian organic remains. Geological Survey of Canada, Decade III, 102 p.Google Scholar
Bockelie, J. F. 1984. The diploporids of the Oslo region, Norway. Palaeontology, 21:168.Google Scholar
Chauvel, J. 1941. Recherches sur les Cystoïdes et les Carpoïdes amoricains. Mémoires de la Société Géologique et Minéralogique de Bretagne, 6:1286.Google Scholar
Chauvel, J. 1966. Échinodermes de l'Ordovician du Maroc. Cahiers de Paléontologie, Editions du Centre National de la Recherche Scientifique, Paris, 117 p.Google Scholar
Chauvel, J. 1977. Calix sedgwicki Rouault (Echinoderme Cystoïde, Ordovicien du Massif amoricain) et l'appareil ambulacaire des Diploporites. Comptes Rendues Sommaire Séance Sociéte Géologique de France, 6:314317.Google Scholar
Chauvel, J., and Melendez, B. 1978. Les Echinodermes (Cystoïdes, Asterozoaires, Homalozoaires) de l'Ordovician moyen des Monts de Tolède (Espange). Estudies Geologicas, 34:7587.Google Scholar
Chauvel, J., and Melendez, . 1986. Note complementaire sur les echinodermes Ordovicians de Sierra Morena. Estudios Geologicos, 42:451459.Google Scholar
Dehm, R. 1932. Cystoideen aus dem rheinischen, Unterdevons, Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie, 69(B):6393.Google Scholar
Durham, J. W., and Caster, K. E. 1963. Helicoplacoidea: a new class of echinoderms. Science, 140:820822.Google Scholar
Durham, J. W., and Caster, K. E. 1966. Helicoplacoids, p. U133U136. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Fortey, R. A., and Morris, S. F. 1982. The Ordovician trilobite Neseuretus from Saudi Arabia and the palaeogeography of the Neseuretus fauna related to Gondwanaland in the earlier Ordovician. Bulletin of the British Museum, Miscellanea, Geology Series, 36(2):6376.Google Scholar
Gehling, J. G. 1987. Earliest known echinoderm—a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa, 11:337345.Google Scholar
Havlíček, V. 1982. Ordovician in Bohemia: development of the Prague Basin and its benthic communities. Sborník Geologických Věd, Geology, 37:103136.Google Scholar
Hall, J. 1864. Account of some new or little known species of fossils of the age of the Niagara Group. Albany, New York, 16 p. (Advance publication of the 18th Report, New York State Cabinet of Natural History.)Google Scholar
Jaekel, O. 1899. Stammesgeschichte de Pelmatozoen 1. Thecoidea und Cystoidea. Julius Springer, Berlin, 442 p.Google Scholar
Kesling, R. 1968. Cystoids, p. S85S267. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Müller, J. 1854. Über den Bau der Echinodermen. Verhandlung Königlichen Academie Wissenschaften, Berlin, 1853:125220.Google Scholar
Neumayr, M. 1889. Die Stämme des Theirreiches. Wirbellose Thiere, Wien and Prag, 603 p.Google Scholar
Parsley, R. L. 1970. Revision of the North American Pleurocystitidae (Rhombifera—Cystoidea). Bulletins of American Paleontology, 58(260):135213.Google Scholar
Parsley, R. L. 1982. Eumorphocystis , p. 280288. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Parsley, R. L. 1988. Probable feeding and respiratory mechanisms in Aristocystites (Diploporida, Middle-Upper Ordovician of Bohemia, CSSR), p. 103108. In Burke, R. et al. (eds.), Proceedings of the Sixth International Echinoderm Conference, Victoria.Google Scholar
Parsley, R. L., and Mintz, L. W. 1975. North American Paracrinoidea: (Ordovician: Paracrinozoa, new, Echinodermata). Bulletins of American Paleontology, 68(288):1115.Google Scholar
Paul, C. R. C. 1971. Revision of the Holocystites fauna (Diploporita) of North America. Fieldiana, Geology, 24:1166.Google Scholar
Paul, C. R. C. 1972. Morphology and function of exothecal pore-structures in cystoids. Palaeontology, 15:128.Google Scholar
Paul, C. R. C. 1978. Respiration rates in primitive (fossil) echinoderms. Thalassia Jugoslavica, 12(1):277286.Google Scholar
Paul, C. R. C., and Bockelie, J. F. 1983. Evolution and functional morphology of the cystoid Sphaeronites in Britain and Scandinavia. Palaeontology, 26:681734.Google Scholar
Paul, C. R. C., and Kesling, R. V. 1968. Echinoderms de l'Ordovician du Maroc by Jean Chauvel, 1966 [Review]. Journal of Paleontology, 42:245247.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.Google Scholar
Prokop, R. 1964. Sphaeronitoidea Neumayr of the lower Paleozoic of Bohemia (Cystoidea, Diploporita). Sborník Geologických Věd, Paleontologie, Series, 3:737.Google Scholar
Prokop, R. 1965. Hippocystis sculptus Barrande, 1887) v českém stredním Ordoviku (Cystoidea). Věsnik ustředniho ustavu geologickelho, 40:303306.Google Scholar
Smith, A. 1980. Stereom microstructure of the Echinoid test. Special papers in Palaeontology, Palaeontological Association, 25:181.Google Scholar
Smith, A. 1984. Echinoid Palaeobiology. Allen and Unwin Ltd., London, 190 p.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Museum of Comparative Zoology, Harvard University, Special Publication, 283 p.Google Scholar
Ulrich, E. O., and Kirk, E. 1921. Amecystis, a new genus of Ordovician Cystidea. Proceedings of the Biological Society of Washington, 34:147148.Google Scholar
Whittington, H. B., and Hughes, C. P. 1972. Ordovician geography and faunal provinces deduced from trilobite distribution. Philosophical Transactions of the Royal Society of London, B, 263:235278.Google Scholar