Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T08:08:14.865Z Has data issue: false hasContentIssue false

Archaiasinids and related porcelaneous larger foraminifera from the late Miocene of the Dominican Republic

Published online by Cambridge University Press:  20 May 2016

Lukas Hottinger*
Affiliation:
Museum of Natural History, CH 4001 Basel, Switzerland

Abstract

Exceptionally large quantities of outstandingly well-preserved, free specimens of larger foraminifera from late Miocene sediments of the Dominican Republic invite an analysis of their structure in detail. The structures of the porcelaneous larger foraminifera reveal that most of them are not candidates for a direct ancestry of the species living today in the Caribbean. Although the late Miocene period has produced Caribbean endemists, in particular within the agglutinated group of the textulariellids and the lamellar-perforate group of the amphisteginids, the porcelaneous archaiasines and soritines are more closely related to the early Miocene forms of the Neotethys than to the Recent Caribbean endemists. These relationships are derived from their relative structural similarity and call for the proposition of appropriate additional taxa on the generic and specific levels. Miocene Miarchaias new genus develops several centimeters large, cyclical agamonts with meandropsinid structures covering the lateral surface of the disc (M. meander new species) whereas species of smaller shell size do not have cyclical generations (M. modestus new species). On the other hand, populations of cyclical schizonts and/or gamonts exhibit structures similar to the Recent, spiral Androsina: Androsinopsis radians new genus and species. The other new taxa erected here, Annulosorites spiralis new genus and species and Cyclorbiculina miocaenica new species, reflect differences in the apertural face and the respective arrangement of radial partitions as used to differentiate Recent Sorites from Amphisorus. Specimens to be attributed to the genera Cycloputeolina and Parasorites are present in the late Miocene of the Dominican Republic. They exhibit an exoskeleton in contrast to true soritids, and will need an eventual worldwide revision on the species level.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butterlin, J. 1981. Claves para la determinacion de macroforaminiferos de Mexico y del Caribe, del Cretacico superior al Miocene medio. Istituto Mexicano Petroleo, Mexico City, 219 p.Google Scholar
Ciry, R. 1964. A propos de Meandropsina larrazeti Munier-Chalmas, générotype d'un genre nouveau: Larrazetia Ciry. Revue de Micropaléontologie, 6:185195.Google Scholar
Cole, St. W. 1959. Names and variation in certain indopacific Camerinids. Bulletins of American Paleontology, 39(181):349371Google Scholar
Cole, St. W. 1961. Names and variation in certain Indopacific Camerinids no. 2, a reply. Bulletins of American Paleontology, 43(195):111128Google Scholar
Cole, St. W. 1965. Structure and classification of some recent and fossil Peneroplids. Bulletins of American Paleontology, 50(228):229265Google Scholar
Cole, St. W. 1966. Additional comments on the foraminiferal genus Camerina. Bulletins of American Paleontology, 50(228):229265Google Scholar
Cole, St. W., and Bermudez, P. J. 1947. Eocene Discocyclinidae and other foraminifera from Cuba. Bulletins American Paleontology, 31(125):191225Google Scholar
Conrad, T. A. 1846. Description of new species of organic remains from the upper Eocene limestones of Tampa Bay. American Journal of Science, series 2, 2:399400.Google Scholar
Crapon de Caprona d'Ersu, A. 1985. Contribution à l'étude des Soritidés actuels (Foraminifères), 3, Soufamilles des Archaiasinae, Meandropsininae et Soritinae et conclusions générales. Revue Paléobiologie, 4(2):347390Google Scholar
Cushman, J. A. 1918. The larger foraminifera of the Panama Canal Zone. Bulletin of the United States National Museum, 103:89102.Google Scholar
Drooger, C. W. 1993. Radial Foraminifera, Morphometrics and Evolution. North Holland, Amsterdam, 242 p.Google Scholar
Ehrenberg, C. G. 1839. Über die Bildung der Kreidefelsen und des Kreidemergels durch unsichtbare Organismen. Physikalische Abhandlungen Königliche Akademie Wissenschaften Berlin 1838, p. 59147.Google Scholar
Flint, J. M. 1899. Recent Foraminifera: A descriptive catalogue of specimens dredged by the U.S. Fish Commission Steamer Albatross. Reports United States National Museum for 1897, p. 249394.Google Scholar
Frost, S. H., and Langenheim, R. L. 1974. Cenozoic reef biofacies, Tertiary larger foraminifera and sceractinian corals from Chiapas, Mexico. Northern Illinois University Press, DeKalb, 387 p.Google Scholar
Gudmundsson, G. 1994. Phylogeny, ontogeny and systematics of Recent Soritacea Ehrenberg, 1839 (Foraminiferida). Micropaleontology, 40(2):101155Google Scholar
Henson, F. R. S. 1950. Middle Eastern Tertiary Peneroplidae (Foraminifera) with remarks on the phylogeny and taxonomy of the family. Thesis, Leiden University (West Yorkshire Printing Co., Wakefield, England), 70 p.Google Scholar
Hofker, J. 1930. The foraminifera of the Siboga Expedition, II: Families Astrorhizidae, Rhizamminidae, Reophacidae, Anomalinidae, Peneroplidae. Siboga Expeditie, 110(Brill, Leiden):79170Google Scholar
Hohenegger, J., Yordanova, E., Yoshikatsu, N., and Tatzreiter, F. 1999. Habitats of larger foraminifera on the upper reef slope of Sesoko Island, Okinawa, Japan. Marine Micropaleontology, 36:109168.CrossRefGoogle Scholar
Hottinger, L. 1969. The foraminiferal genus Yaberinella Vaughan, 1928, with remarks on its species and its systematic position. Eclogae geologicae Helvetiae, 62(2):743749Google Scholar
Hottinger, L. 1979. Comparative anatomy of elementary shell structures in selected larger foraminifera, p. 203266. In Headley, R. H. and Adams, C. G. (eds.), Foraminifera, 3. Academic Press, London.Google Scholar
Hottinger, L. 1982. Larger foraminifera, giant cells with a historical background. Naturwissenschaften (Berlin), 68(8):361371Google Scholar
Hottinger, L. Construction, structure and function of foraminiferal shells, p. 219235. In Leadbeater, B. and Riding, R. (eds.), Biomineralisation in Lower Plants and Animals. Systematic Association Special Volume 30, Clarendon, Oxford.Google Scholar
Hottinger, L. 1996. Sels nutritifs et biosédimentation. Mémoires Société Géologique France (n.s.), 169:99107.Google Scholar
Hottinger, L. 1997. Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitation. Bulletin Société Géologique France, 168(4):491505Google Scholar
Hottinger, L. 1999. Odd partnerships, a particular size relation between close species of larger foraminifera, with an emendation of an outstandingly odd partner, Glomalveolina delicatissima (Smout, 1954). Middle Eocene. Eclogae geologicae Helvetiae, 92(3):385393Google Scholar
Hottinger, L. 2000. Functional morphology of benthic foraminiferal shells, envelopes of cells beyond measure. Micropaleontology, 46(supplement l):5786Google Scholar
Hottinger, L., and Drobne, K. 1980. Early Tertiary imperforate, conical foraminifera. Razprave Slovenska Academia Znanosti. Umetnosti, (Cl.4, Hist Nat.), 22(3):187276Google Scholar
Hottinger, L., Halicz, E., and Reiss, Z. 1994. Recent Foraminiferida from the Gulf of Aqaba, Red Sea. Dela Slovenska Academia Znanosti Umetnosti, 33:1179.Google Scholar
Langer, M. 1988. Recent epiphytic foraminifera from Vulcano (Mediterranean Sea). Revue Paléobiologie, volume spec. 2, Benthos, 86:827832.Google Scholar
Langer, M., and Hottinger, L. 2000. Biogeography of selected “larger” foraminifera. Micropaleontology, 46(supplement 1):105126Google Scholar
Lehmann, R. 1961. Strukturanalyse einiger Gattungen der Subfamilie Orbitolitinae. Eclogae geologicae Helvetiae, 54(2):599667Google Scholar
Leppig, U. 1992. Functional anatomy of fusulinids (foraminifera): Significance of polar tortion illustrated in Triticites and Schwagerina (Schwagerinidae). Palaeontologische Zeitschrift, 66:3950.CrossRefGoogle Scholar
Leutenegger, S. 1984. Symbiosis in benthic foraminifera: specificity and host adaptations. Journal of Foraminiferal Research, 14(1):1635Google Scholar
Levy, A. 1977. Révision Micropaléontologique des Soritidae actuels bahamiens: Un nouveau genre; Androsina. Bulletin Centre Recherches Exploration Production ELF Aquitaine (Pau, France), 1(2):393449Google Scholar
Levy, A. 1994. Sur un phénomène de spéciation induit par l'environnement chez les Soritidés actuels (foraminifères). Oceanologica Acta, 17(1):3341Google Scholar
Loeblich, A. R., and Tappan, H. 1987. Foraminiferal Genera and their Classification. Van Nostrand Reinhold, New York.Google Scholar
Martin, E. R. 1986. Habitat and distribution of the foraminifer Archaias angulatus (Fichtel and Moll) (Miliolina, Soritidae), Northern Florida Keys. Journal of Foraminiferal Research, 16(3):201206Google Scholar
Morariu, A., and Hottinger, L. 1988. Amphisteginids: Specific identification, dimorphism, coiling direction and provincialism. Revue Paléobiologie, volume spec. 2, Benthos', 86:695698.Google Scholar
Orbigny, A. d' 1839. Foraminifères, p. 1224. In Ramon de la Sagra, Histoire Naturelle de l'ǐle de Cuba. Arthus Bertrand, Paris.Google Scholar
Reichel, M. 1952. Fusarchaias bermudezi, n. gen. n. sp., péneroplidé alvéoliniforme de l'Oligo-Miocène de Cuba. Eclogae geologicae Helvetiae, 44:458464.Google Scholar
Reiss, Z., and Hottinger, L. 1984. The Gulf of Aqaba: Ecological Micropaleontology, Ecological Studies, 50. Springer Verlag, Berlin, 354 p.CrossRefGoogle Scholar
Robinson, E. 1974. Some larger foraminifera from the Eocene Limestone at Red Gal Ring, Jamaica. Verhandlungen Naturforschende Gesellschaft Basel, 84:281291.Google Scholar
Rögl, F., and Hansen, H. J. 1984. Foraminifera descibed by Fichtel and Moll in 1798: A revision of Testacea Microscopica, Neue Denkschriften Naturhistorisches Museum Wien 3:1–143 with appendix. Ferdinand Berger, Wien-Horn.Google Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology in the Northern Dominican Republic, 1: Field surveys, lithology, environment, and age. Bulletins of American Paleontology, 89(323):179Google Scholar
Seiglie, A, Grove, K., and Rivera, J. A. 1976. Revision of some Caribbean Archaiasinae, new genera, species and subspecies. Eclogae geologicae Helvetiae, 70(3):855883Google Scholar
Silvestri, A. 1937. Foraminifera dell’ Oligocene e del Miocene della Somalia. Paleontographica italica, 32(supplement 2):45264Google Scholar
Smout, A. H., and Eames, F. E. 1958. The Genus Archaias (Foraminifera) and its stratigraphical distribution. Paleontology, 1:207225.Google Scholar
Vaughan, T. W. 1927. Notes on the Types of Lepidocyclina mantelli (Morton) Gümbel and on Topotypes of Nummulites floridanus Conrad. Proceedings of the Academy of Natural Sciences, Philadelphia, 74:299303.Google Scholar
Vaughan, T. W. 1929. Additional new species of Tertiary foraminifera from Jamaica. Journal of Paleontology, 3:373382.Google Scholar