Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T07:43:50.189Z Has data issue: false hasContentIssue false

Archaeocyaths—a history of phylogenetic interpretation

Published online by Cambridge University Press:  20 May 2016

Stephen M. Rowland*
Affiliation:
Department of Geoscience, University of Nevada, Las Vegas 89154-4010,

Abstract

Archaeocyaths are calcareous, conical, Cambrian fossils with a long history of phylogenetic uncertainty and changing interpretations. The history of phylogenetic interpretation of archaeocyaths reveals five distinct schools of thought: the coelenterate school, the sponge school, the algae school, the Phylum Archaeocyatha school, and the Kingdom Archaeata school. Late nineteenth century and early twentieth century paleontologists worked within a paradigm of inexorably increasing diversity through time, and they did not believe in the concept of extinct phyla. Consequently, prior to about 1950, archaeocyaths were bounced around from coelenterates to sponges, to algae. By the 1930s, after considerable study, all workers agreed that archaeocyaths were sponges of one type or another. In the mid-twentieth century a significant paradigm shift occurred in paleontology, allowing the viability of the concept of a phylum with no extant species. Correspondingly, two new schools of thought emerged regarding archaeocyathan taxonomy. The Phylum Archaeocyatha school placed them in their own phylum, which was inferred to be closely related to Phylum Porifera within Subkingdom Parazoa. A second new school removed archaeocyaths and some other Paleozoic problematica from the animal kingdom and placed them in Kingdom Archaeata (later Kingdom Inferibionta). The Phylum Archaeocyatha school was the mainstream interpretation from the 1950s through the 1980s. However, the widespread use of SCUBA beginning in the 1960s ultimately led to the rejection of the interpretation that archaeocyaths belong in a separate phylum. SCUBA allowed biologists to study deep fore-reef and submarine cave environments, leading to the discovery of living calcareous sponges, including one aspiculate species that is morphologically similar to archaeocyaths. These discoveries in the 1960s and 1970s stimulated a re-examination of sponge phylogeny generally, and comparisons between archaeocyaths and sponges in particular. The result was the abandonment of the Phylum Archaeocyatha school in the 1990s. Present consensus is that archaeocyaths represent both a clade and a grade—Class Archaeocyatha and the archaeocyathan morphological grade—within Phylum Porifera.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balsam, W. L., and Vogel, S. 1973. Water movement in archaeocyathids: evidence and Implications of passive flow in models. Journal of Paleontology, 47:979984.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic, p. 719746. In Tavesz, M. J. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K. 1985. Classes and adaptive variety: the ecology of diversication in marine faunas through the Phanerozoic, p. 191253. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns. Princeton University Press and Pacific Division, American Association for the Advancement of Science, Princeton, N.J. and San Francisco.Google Scholar
Bayfield, H. W. 1845. On the junction of the transition and primary rocks of Canada and Labrador. Quarterly Journal Geological Society of London, 1:450459.CrossRefGoogle Scholar
Beadle, S. C. 1988. Dasyclads, cyclocrinitids and receptaculitids: comparative morphology and paleoecology. Lethaia, 21:112.CrossRefGoogle Scholar
Bedford, R., and Bedford, J. 1939. Development and classification of Archaeos (Pleospongia). Kyancutta Museum of South Australia, Memoir 6, p. 6782, plates xlii–lii.Google Scholar
Billings, E., 1861. New species of Lower Silurian fossils. Geological Survey of Canada, Montreal, 24 p.CrossRefGoogle Scholar
Billings, E., 1865. Paleozoic Fossils, V. 1. Geological Survey of Canada. Dawson Brothers, Montreal, 426 p.Google Scholar
Bornemann, J. G. 1884. Bericht über Fortsetzung seiner Untersuchungen cambrischer Archaeocyathus-Formen und verwandter Organismen von der Insel Sardinien. Deutsche Geologische Gesellschaft, Zeitschrift, 36:702706.Google Scholar
Bornemann, J. G. 1886. Die Versteinerungen des cambrischen Schichtensystems der Insel Sardinien nebst vergleichenden Untersuchungen ber analoge Vorkomnisse aus andern Ländern. Abr. 1, Acta Ksl. Leopold-Carol. Deutschen. Akad. Naturforsch., 51(1):148.Google Scholar
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today, 8(9):18.Google Scholar
Debrenne, F. 1964. Archaeocyatha—Contribution à l'étude des faunes Cambriennes du Maroc, de Sardaigne et de France. Notes et Memoires du Service Géologique du Moroc, 179, 265 p.Google Scholar
Debrenne, F. 1992. Diversification of Archaeocyatha, p. 425443. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum, New York.CrossRefGoogle Scholar
Debrenne, F., and Reitner, J. 2001. Sponges, cnidarians, and ctenophores, p. 301325. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Debrenne, F., and Vacelet, J. 1984. Archaeocyatha: is the sponge model consistent with their structural organization? Paleontographica Americana, 54:358369.Google Scholar
Debrenne, F., and Zhuravlev, A. Yu. 1992. Irregular Archaeocyaths. CNRS Editions, Paris, 289 p.Google Scholar
Debrenne, F. and Zhuravlev, A. Yu. 1994. Archaeocyathan affinities: how deep can we go into the systematic affinities of an extinct group?, p. 312. In van Soest, R. W. M., Van Kempen, T. M. G., and Braekman, J.-C. (eds.), Sponges in Time and Space. A. A. Balkema, Rotterdam.Google Scholar
Debrenne, F., Rozanov, A. Yu., and Zhuravlev, A. Yu. 1990. Regular Archaeocyaths. CNRS, Paris, 218 p.Google Scholar
Gould, S. J. 1989. Wonderful Life. Norton, New York, 347 p.Google Scholar
Guo, S. Z. 1983. The receptaculitid Soanites from the Early Ordovician of China. Memoirs of the Association of Australasian Palaeontologists, 1:7584.Google Scholar
Hartman, W. D., and Goreau, T. F. 1970. Jamaican coralline sponges: Their morphology, ecology, and fossil relatives. Symposia of the Zoological Society of London, 25:205243.Google Scholar
Hecker, R. R. 1928. O pervoy nakhodke archeotsiat v Sibiri (On the first discovery of archaeocyaths in Siberia). Geologicheskii Vestnik, 6:4346. (In Russian)Google Scholar
Hill, D. 1964. The Phylum Archaeocyatha. Biological Reviews, 39:232258.CrossRefGoogle Scholar
Hill, D. 1965. Archaeocyatha from Antarctica and a review of the phylum. Trans-Antarctic Expedition Scientific Report No. 10. Trans-Antarctic Expedition Committee, London, 151 p.Google Scholar
Hill, D. 1972. Treatise on Invertebrate Paleontology, Pt. E (revised), Archaeocyatha. Geological Society of America and University of Kansas Press, Lawrence, 158 p.Google Scholar
Hinde, G. J. 1889. On Archaeocyathus Billings, and on other genera allied to or associated with it, from the Cambrian strata of North America, Spain, Sardinia, and Scotland. Geological Society of London, Quarterly Journal, 45:125148.CrossRefGoogle Scholar
James, N. P., and Klappa, C. F. 1983. Petrogenesis of Early Cambrian reef limestones, Labrador, Canada. Journal of Sedimentary Petrology, 53:10511096.Google Scholar
Kruse, P. D. 1990. Are archaeocyaths sponges, or are sponges archaeocyaths?, p. 310323. In Jago, J. B. and Moore, R. S. (eds.), The Evolution of a Late Precambian-Early Palaeozoic Rift Complex: The Adelaide Geosyncline. Geological Society of Australia Special Publication 16.Google Scholar
Kruse, P. D., and Debrenne, F. 1989. Review of archaeocyath microstructure. Memoirs of the Association of Australasian Palaeontologists, 8:133141.Google Scholar
Laubenfels, M. W. de. 1955. Porifera, p. 21112. In Treatise on Invertebrate Paleontology, Pt. E, Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Meek, F. B. 1868a. Preliminary notice of a remarkable new genus of corals, probably typical of a new family, forwarded for study by Prof. J. D. Whitney, from the Silurian rocks of Nevada. American Journal of Science, 2nd Series, 45:6264.Google Scholar
Meek, F. B. 1868b. Note on Ethmophyllum and Archaeocyathus . American Journal of Science, 2d Series, 46:144.Google Scholar
Meglitsky, N. G. 1851. Geognostiche Bemerken aus einer Reise in Ost-Sibirien im Jahre 1850, p. 118162. In Verh. Russ. Vaiserl. Miner. Ges., St. Petersburg.Google Scholar
Myagkova, Ye. I. 1966. Soanites—a new group of organisms. International Geological Reviews, 8:795802.CrossRefGoogle Scholar
Nitecki, M. H. 1986. Receptaculitids and their relationship to other problematic fossils, p. 2734. In Hoffman, A. and Nitecki, M. H. (eds.), Problematic Fossil Taxa. Oxford Monographs on Geology and Geophysics, 5, Oxford University Press, New York.Google Scholar
Nitecki, M. H., and Debrenne, F. 1979. The nature of radiocyathids and their relationship to receptaculitids. Géobios, 12(1):527Google Scholar
Nitecki, M. H., and Toomey, D. F. 1979. Nature and classification of receptaculitids. Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 3:725732.Google Scholar
Nitecki, M. H., Mutvei, H., and Nitecki, D. V. 1999. Receptaculitids—a phylogenetic debate on a problematic fossil taxon. Kluwer/Plenum, New York, 241 p.Google Scholar
Nitecki, M. H., Zhuravleva, I. T., Myagkov, Ye. I., and Toomey, D. F. 1981. Similarity of Soanites bimuralis to Archaeocyatha and receptaculitids. Paleontological Journal, 1981(1):15Google Scholar
Okulitch, V. J. 1935. Cyathospongia—a new class of Porifera to include the Archaeocyathinae. Royal Society of Canada, Treatise, 3rd series, section 4, v. 29:75106, 2 plates.Google Scholar
Okulitch, V. J. 1937. Some changes in nomenclature of Archaeocyathi (Cyathospongia). Journal of Paleontology, 11:251252.Google Scholar
Okulitch, V. J. 1943. North American Pleospongia. Geological Society of America Special Paper, 48, 112 p.Google Scholar
Okulitch, V. J. 1955. Archaeocyatha, p. E1E20. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. E, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Okulitch, V. J., and de Laubenfels, M. W. 1953. The systematic position of Archaeocyatha. Journal of Paleontology, 27:481485.Google Scholar
Öpik, A. A. 1975. Cymbric Vale fauna of New South Wales and Early Cambrian biostratigraphy. Australia Department of Mines and Energy, Bureau of Mineral Resources, Geology and Geophysics Bulletin, 159, 78 p.Google Scholar
Raymond, P. E. 1931. The systematic position of the Archaeocyathinae. Museum of Comparative Zoology, Bulletin, 55:172177.Google Scholar
Rigby, J. K., and Gangloff, R. A. 1987. Phylum Archaeocyatha, p. 107115. In Boardman, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell, Palo Alto.Google Scholar
Savarese, M. 1992. Functional analysis of archaeocyathan skeletal morphology and its paleobiological implications. Paleobiology, 18:464480.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979, A kinetic model of Phanerozoic taxonomic diversity II. Early Phanerozoic families and multiple equilibria. Paleobiology, 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1981. The uniqueness of the Cambrian fauna, p. 203207. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System: U.S. Geological Survey Open-File Report 81–743.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time, p. 153190. In Valentine, J. W. (ed.). Phanerozoic Diversity Patterns. Princeton University Press and Pacific Division, American Association for the Advancement of Science, Princeton, N.J. and San Francisco.Google Scholar
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.CrossRefGoogle Scholar
Stanley, S. M., and Hardie, L. A. 1999. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today, 9:17.Google Scholar
Taylor, T. G. 1910. The Archaeocyathinae from the Cambrian of South Australia with an account of the morphology and affinities of the whole class. Memoirs of the Royal Society of South Australia, Volume II, Pt. 2:55188.Google Scholar
Ting, T. H. 1937. Revision der Archaeocyathinen. Neues Jahrbuch fr Geologie, Mineralogie, Paläontologie, Abt. B, 78:327379.Google Scholar
Toll, E. von. 1899. Beiträge zur Kenntniss des Sibirschen Cambrium. Imperial Academy of Science, St. Petersburg, Memoir, 8(10):157.Google Scholar
Vacelet, J. 1970. Les éponges Pharétronides actuelles. Symposia of the Zoological Society of London, 25:189204.Google Scholar
Vacelet, J. 1977. Une nouvelle relique de Sécondaire, un représentant actuel des éponges fossiles Sphinctozoaires. Comptes rendus de l'Académie des Sciences, 285:509511.Google Scholar
Vacelet, J. 1979. Description et affinités d'une éponge sphinctozoaire actuelle, p. 483493. In Levi, C. and Boury-Esnault, N. (eds.), Biologie des Spongiaires. Colloques des Sciences, Paris, v. 291.Google Scholar
Vacelet, J. 1985. Coralline sponges and the evolution of the Porifera, p. 113. In Conway Morris, S. (ed.), The Origins and Relationships of Lower Invertebrates: Systematics Association Special Volume 28, Clarendon Press.Google Scholar
Van Iten, H., and Fisher, D. C. 1983. Microstructural and mineralogical analysis of the meroms of the receptaculitid Fisherites reticulatus . Geological Society of America Abstracts with Programs, 15(6):710.Google Scholar
Vologdin, A. G. 1937. Arkheotsiaty i resul'taty ikh izucheniya v SSSR (kratkaya svodka). [Archaeocyaths and their study in the USSR (a brief review)]. Problemy Paleontologii, v. 2–3, p. 453481 (in Russian), p. 481–500 (in English). Moscow, Paleontologicheskaya Laboratoriya, Moskovskoro Gosudarstvennoro Universiteta.Google Scholar
Vologdin, A. G. 1962. Tip Archaeocyatha: Arkheotsiaty (Phylum Archaeocyatha: Archaeocyaths), p. 89139. In Sokolov, B. S. (ed.), Osnovy Paleontologii: Gubki, Arkheotsiaty, Kishechnopolostnye, Chervi (Principles of Paleontology: Sponges, Archaeocyaths, Coelenterates, Worms), USSR Academy of Science, Moscow.Google Scholar
Vologdin, A. G., and Zhuravleva, I. T. 1947. Morfologiya pravil'nikh arkheotsiat (Morphology of regular archaeocyaths), p. 227228. In Referaty nauchna-issledovatel'skikh rabot za 1945 (Abstracts of scientific research for 1945), Academy of Sciences of the USSR, Division of Biological Sciences, Moscow and Leningrad.Google Scholar
Walcott, C. D. 1886. Cambrian faunas of North America. U.S. Geological Survey Bulletin, 30:7289.Google Scholar
Walcott, C. D. 1894. The fauna of the Lower Cambrian or Olenellus zone, p. 599602. In U.S. Geological Survey, 10th Annual Report.Google Scholar
Wood, R. A. 1990. Reef-building sponges. American Scientist, 78:224235.Google Scholar
Wood, R. A. 1991a. Problematic reef-building sponges, p. 113124. In Simonetta, A. and Conway Morris, S. (eds.), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge University Press, Cambridge.Google Scholar
Wood, R. A. 1991b. Non-spicular biomineralization in calcified demosponges, p. 322340. In Reitner, J. and Keupp, H. (eds.), Fossil and Recent Sponges. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Wood, R. A. 1999. Reef Evolution. Oxford University Press, Oxford, 414 p,Google Scholar
Wood, R. A., Zhuravlev, A. Yu., and Debrenne, F. 1992. Functional biology and ecology of Archaeocyatha. Palaios, 7:131156.CrossRefGoogle Scholar
Zhuravlev, A. Yu. 1986. Evolution of archaeocyaths and palaeobiogeography of the Early Cambrian. Geological Magazine, 123:377385.CrossRefGoogle Scholar
Zhuravlev, A. Yu. 1989. Poriferan aspects of archaeocyathan skeletal function. Memoir of the Association of Australasian Palaeontologists, 8:387399.Google Scholar
Zhuravlev, A. Yu. 1996. Reef ecosystem recovery from the Early Cambrian extinction, p. 7986. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Geological Society (London) Special Publication 102.Google Scholar
Zhuravlev, A. Yu. and Nitecki, M. N. 1985. On the comparative morphology of the archaeocyathids and receptaculitids. Paleontological Journal, 1985(4):134136.Google Scholar
Zhuravlev, A., Yu, , Debrenne, F., and Wood, R. A. 1990. A synonymized nomenclature for calcified sponges. Geological Magazine, 127:587589.CrossRefGoogle Scholar
Zhuravleva, I. T. 1970. Porifera, sphinctozoa, archaeocyathi—their connections. Symposia of the Zoological Society of London, 25:4159.Google Scholar
Zhuravleva, I. T., and Myagkova, Ye. I. 1972. Archaeata—novaya grappa organizmov paleozoya (Archaeata—a new group of Paleozoic organisms). International Geological Congress, Session XXIV, Nauka, Moscow, p. 714. (In Russian with English abstract)Google Scholar
Zhuravleva, I. T., and Myagkova, Ye. I. 1974a. Sravnitel'naya kharakteristika Archaeata i Stromatoporoidea (Comparative characteristics of Archaeata and Stromatoporoidea), p. 6370. In Drevniye Cnidaria (Ancient Cnidaria), Nauka, Moscow. (In Russian with English abstract)Google Scholar
Zhuravleva, I. T., and Myagkova, Ye. I. 1974b. Characteristics of biotypes in some organic build-ups (archaeocyaths, Soanites, aphrosalpingids, and sphinctozoans), p. 117122. In Sreda i Zhizn b Geologicheskom Proshlom (Environment and Life in the Geological Past), Novosibirsk, p. 117122. (In Russian)Google Scholar
Zhuravleva, I. T., and Myagkova, Ye. I. 1987. Nizshiye Mnogokletochnye Fanerozoya (Primitive Phanerozoic Multicellular Organisms). Institute of Geology and Geophysics, Siberian Branch, Academy of Sciences of the USSR, Transactions, v. 695, Nauka, Moscow, 224 p. (In Russian)Google Scholar