Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T12:10:56.915Z Has data issue: false hasContentIssue false

An enigmatic Arthropoda from the Upper Triassic (Carnian) southwestern Gondwana (Argentina)

Published online by Cambridge University Press:  25 October 2019

María B. Lara
Affiliation:
Área Paleontología, Centro de Ecología Aplicada del Litoral—CECOAL-CCT-Nordeste-CONICET, Casilla de Correo 128, 3400Corrientes, Argentina
Bárbara Cariglino
Affiliation:
Área de Paleobotánica y Paleopalinología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia,’ Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Ángel Gallardo 470, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina
Ana M. Zavattieri
Affiliation:
Departamento de Paleontología, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales IANIGLA, CCT-CONICET Mendoza, Av. Adrián Ruiz Leal s/n, Parque General San Martín, (M5502 IRA) Mendoza, Casilla de Correo 330, Mendoza, Argentina
Iracema Zacarías
Affiliation:
Área Paleontología, Centro de Ecología Aplicada del Litoral—CECOAL-CCT-Nordeste-CONICET, Casilla de Correo 128, 3400Corrientes, Argentina

Abstract

The presence of a new taxon, Duraznovis gallegoi new genus new species is reported and described from an early Late Triassic (Carnian) deposit in Argentina. Two specimens, recovered from the Quebrada del Durazno locality, uppermost levels of the Potrerillos Formation, Cuyana Basin (Mendoza), are represented by the molds of their shield and imprints of soft parts. The identity of these specimens appears enigmatic but closely resembles in the possession of a generalized arthropod morphology and a distinctive combination of characters, to living and fossil representatives of xiphosurans (Chelicerata) and notostracans (Branchiopoda). The new fossils are associated with a rich biota comprising abundant insects, spinicaudatans, plants, and scarce fish remains living in semipermanent swamps and/or ponds within a delta plain environment with intermittent episodes of flooding, in a warm temperate and humid megamonsoonal climate during Triassic times. In this context, we analyze the taphonomic and ecological implications of their presence. Lastly, these unique specimens at the Quebrada del Durazno locality adds to the diversity of the biota, revealing the importance of this site as an exceptional paleontological Triassic deposit.

UUID: http://zoobank.org/8d1194c2-170c-4b7a-b0c6-5c08b0974d95

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamowicz, S.J., and Purvis, A., 2005, How many branchiopod crustacean species are there? Quantifying the components of underestimation: Global Ecology and Biogeography, v. 14, p. 455468, doi:10.1111/j.1466-822X.2005.00164.x.CrossRefGoogle Scholar
Allen, J.P., and Feldmann, R.M., 2005, Panduralimulus babcocki n. gen. and sp., a new limulacean horseshoe crab from the Permian of Texas: Journal of Paleontology, v. 79, p. 594600, doi:10.1666/0022-3360(2005)079<0594:PBNGAS>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Astrop, T.I., 2014, The evolutionary dynamics of sexual systems in deep time: an integrated biological and paleontological approach [Ph.D. thesis]: Akron, Ohio, University of Akron, 233 p.Google Scholar
Babcock, L.E., Merriam, D.F., and West, R.R., 2000, Paleolimulus, an early limuline (Xiphosurida), from Pennsylvanian-Permian Lagerstätten of Kansas and taphonomic comparison with modern Limulus: Lethaia, v. 33, p. 129141, doi:10.1080/00241160025100017.Google Scholar
Barredo, S.P., 2012, Geodynamic and tectonostratigrafic study of a continental rift: The Triassic Cuyana Basin, Argentina, in Sharkov, E., ed., Tectonics—Recent Advances, v. 346, p. 99130.Google Scholar
Bicknell, R.D., Žalohar, J., Miklavc, P., Celarc, B., Križnar, M., and Hitij, T., 2019, A new limulid genus from the Strelovec Formation (Middle Triassic, Anisian) of northern Slovenia: Geological Magazine, doi:10.1017/S0016756819000323.CrossRefGoogle Scholar
Bicknell, R.D.C., Pates, S., and Botton, M.L., 2018, Abnormal xiphosurids, with possible application to Cambrian trilobites: Palaeontologia Electronica, v. 21, p. 117, doi:10.26879/866.Google Scholar
Błażejowski, B., 2015, The oldest species of the genus Limulus from the Late Jurassic of Poland, in Carmichael, R.H., Botton, M.L., Shin, P.K.S., and Cheung, S.G., eds., Changing Global Perspectives on Horseshoe Crab Biology, Conservation and Management: Cham, Switzerland, Springer International Publishing, p. 314, doi:10.1007/978-3-319-19542-1_1.CrossRefGoogle Scholar
Błażejowski, B., Niedźwiedzki, G., Boukhalfa, K., and Soussi, M., 2017, Limulitella tejraensis, a new species of limulid (Chelicerata, Xiphosura) from the Middle Triassic of southern Tunisia (Saharan Platform): Journal of Paleontology, v. 91, p. 960967, doi:10.1017/jpa.2017.29.CrossRefGoogle Scholar
Camacho, H.H., 1995, Los crustáceos branquiopodos: in Stipanicic, P.N., and Hünicken, M.A, eds., Contribuciones a la Palaeophytologia Argentina, Partes 1 a 7I: Actas de la Academia Nacional de Ciencias (Córdoba), v.11, p. 233234.Google Scholar
Camacho, H.H., and Del Río, C.J., 2007, Gastropoda, in Camacho, H.H., and Longobucco, M.I., eds., Los Invertebrados Fósiles: Buenos Aires, Fundación de Historia Natural Félix de Azara, p. 323376.Google Scholar
Carignano, A.P., and Zavattieri, A.M., 2018, Darwinulocopina (Ostracoda) triásicos de la Formación Cerro de Las Cabras, Cuenca Cuyana, Mendoza, Argentina: Resultados preliminaries, in Reunión de Comunicaciones de la Asociación Paleontológica Argentina (RCAPA), Puerto Madryn, Argentina, 21–23 de Noviembre de 2018, Libro de Resúmenes: Buenos Aires, Asociación Paleontológica Argentina, p. 49.Google Scholar
Carignano, A.P., Echeverría, J., and Zavattieri, A.M., 2018, Posible dimorfismo sexual en los Darwinulocopina del Triásico Medio de Mendoza, in Reunión de Comunicaciones de la Asociación Paleontológica Argentina (RCAPA), Puerto Madryn, Argentina, 21–23 de Noviembre de 2018, Libro de Resúmenes: Buenos Aires, Asociación Paleontológica Argentina, p. 50.Google Scholar
Chebli, G.A., Labayén, I.L., Laffitte, G.A., and Rosso, M.R., 1984, Materia orgánica, ambiente deposicional y evaluación oleogenética de la Cuenca Cuyana, in Relatorio del Congreso Geológico Argentino, 9th, Bariloche, Argentina, Actas 7: Buenos Aires, Asociación Geológica Argentina, Servicio Geológico Nacional, p. 6885.Google Scholar
Chebli, G.A., Ploszkiewicz, J.V., and Azpiroz, G.M., 2001, El sistema Triásico y los hidrocarburos, in Artabe, A.E., Morel, E.M. and Zamuner, A.B., eds., El Sistema Triásico en la Argentina: La Plata, Argentina, Fundación Museo de La Plata ‘Francisco Pascasio Moreno,’ p. 283315.Google Scholar
Covacevich, V., Pino, P.L., and Fuenzalida, G., 1988, Presencia del género Triops Shrank, 1803 (Arthropoda: Branchiopoda) en la Formación Pular (Paleozoico superior), Región de Antofagasta, Chile, in Congreso Geológico Chileno, 5th, Santiago, Chile: Santiago, Comunicaciones (Universidad de Chile), Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, v. 5, p. 341358.Google Scholar
Dana, J.D., 1852, Crustacea, Parts 1 and 2; U. S. Exploring Expedition During the Years 1838, 1839, 1840, 1841, 1842, Under the Command of Charles Wilkes, U.S.N.: Philadelphia, C. Sherman, v. 13, p. 11618.Google Scholar
Dunlop, J.A, and Selden, P.A., 1997, The early history and phylogeny of the chelicerates, in Fortey, R.A., and Thomas, R.H., eds., Arthropod relationships: Systematics Association Special Volumes Series, v. 55, p. 221235.Google Scholar
Fisher, D.C., 1979, Evidence for subaerial activity of Euproops danae (Merostomata, Xiphosurida), in Nitecki, M.H., ed., Mazon Creek Fossils: New York, Academic Press, p. 379447.CrossRefGoogle Scholar
Foster, W.J., and Twitchett, R.J., 2014, Functional diversity of marine ecosystems after the late Permian mass extinction event: Nature Geoscience, v. 7, p. 233238, doi:10.1038/ngeo2079.CrossRefGoogle Scholar
Gall, J.C., and Grauvogel-Stamm, L., 2005, The early Middle Triassic ‘Grès à Voltzia’ Formation of eastern France: A model of environmental refugium: Paléontologie Générale (Paléoécologie), v. 4, p. 637652, doi:10.1016/j.crpv.2005.04.007.Google Scholar
Gallego, O.F., 1992, Conchostracos triásicos de Mendoza y San Juan, Argentina: Ameghiniana, v. 2, p. 159175.Google Scholar
Gallego, O.F., 1999, Estudio sistemático de las faunas de conchóstracos triásicos de la República Argentina [PhD thesis]: Córdoba, Argentina, Universidad Nacional de Córdoba, 210 p.Google Scholar
Gallego, O.F., 2005, First record of the family Palaeolimnadiopseidae Defretin Le-Franc, 1965 (Crustacea-Conchostraca) in the Triassic of Argentina: Journal of South American Earth Science, v. 18, p. 223231, doi:10.1016/j.jsames.2004.10.002.CrossRefGoogle Scholar
Gallego, O.F., Zavattieri, A.M., and López-Arbarello, A., 2004, Conchóstracos y restos de peces de la localidad tipo de la Formación Río Mendoza (Triásico Medio), provincia de Mendoza, Argentina: Ameghiniana, v. 41, p. 289301.Google Scholar
Gallego, O.F., Rébori, L.O., Zavattieri, A.M., Sinitshenkova, N., Lara, M.B., and Martins-Neto, R.G., 2011, The most ancient Platyperlidae (Insecta–Perlida = Plecoptera) from the early Upper Triassic deposits in southern South America: Ameghiniana, v. 48, p. 447461.CrossRefGoogle Scholar
Griffin, M., and Varela, A.N., 2012, Systematic palaeontology and taphonomic significance of the mollusc fauna from the Mata Amarilla Formation (lower Upper Cretaceous), southern Patagonia, Argentina: Cretaceous Research, v. 37, p. 164176, doi:10.1016/j.cretres.2012.03.016.CrossRefGoogle Scholar
Gueriau, P., Rabet, N., Gaël, C., Lagebro, L., Vannier, J., Derek, E.G., Briggs, D.E.G., Charbonnier, S., Olive, S., and Béthoux, O., 2016, A 365-million-year-old freshwater community reveals morphological and ecological stasis in branchiopod crustaceans: Current Biology, v. 26, p. 383390, doi:10.1016/jcub.2015.12.039.CrossRefGoogle ScholarPubMed
Hauschke, N., and Wilde, V., 1987, Paleolimulus fuchsbergensis n. sp. (Xiphosura, Merostomata) aus der oberen Trias von Nordwestdeutschland, mit einer Übersicht zur Systematik und Verbreitung rezenter Limuliden: Paläontologische Zeitschrift, v. 61, p. 87108.CrossRefGoogle Scholar
Hegna, T.A., 2012, Phylogeny and fossil record of branchiopod crustaceans: An integrative approach [Ph.D. thesis]: New Haven, Connecticut, Yale University, 262 p.Google Scholar
Hu, S., Zhang, Q., Feldmann, R.M., Benton, M.J., Schweitzer, C.E., Huang, J., Wen, W., Zhou, C., Xie, T., , T., and Hong, S., 2017, Exceptional appendage and soft-tissue preservation in a Middle Triassic horseshoe crab from SW China: Scientific Reports, v. 7, no. 14112, doi:10.1038/s41598-017-13319-x.Google Scholar
Keilhack, L., 1909, Phyllopoda, in Brauer, F., ed., Die Süsswasserfauna Deutschlands: Eine Exkursionsfauna, Heft 10: Jena, Germany, Gustav Fischer, p. 1112.Google Scholar
Jones, T.R. 1863, A monograph of the fossil Estheriae: Monographs of the Palaeontographical Society, London, 134 p.CrossRefGoogle Scholar
Lagebro, L., Gueriau, P., Hegna, T.A., Rabet, N., Butler, A.D., and Budd, G.E., 2015, The oldest notostracan (Upper Devonian Strud locality, Belgium): Palaeontology, v. 58, p. 497509, doi:10.1111/pala.12155.CrossRefGoogle Scholar
Lamsdell, J.C., 2013, Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura: Zoological Journal of the Linnean Society, v. 167, p. 127, doi:10.1111/j.1096-3642.2012.00874.x.CrossRefGoogle Scholar
Lamsdell, J.C., 2016, Horseshoe crab phylogeny and independent colonizations of fresh water: Ecological invasion as a driver for morphological innovation: Palaeontology, v. 59, p. 181194, doi:10.1111/pala.12220.CrossRefGoogle Scholar
Lange, E.W., 1923, Über neue Fossilfunde aus der Trias von Göttingen: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 74, p. 162168.Google Scholar
Lara, M.B., 2016, La paleoentomofauna triásica del Cerro Cacheuta (Cuenca Cuyana): Estudio sistemático, paleoecológico y su relación con otras asociaciones coetáneas [Ph.D. thesis]: Córdoba, Argentina, Universidad Nacional de Córdoba, 414 p.Google Scholar
Lara, M.B., and Aristov, D., 2016, First records of Geinitziidae family (Insecta: Grylloblattida) from Upper Triassic of Argentina (Mendoza): Alcheringa, An Australasian Journal of Palaeontology, v. 41, p. 207214, doi:10.1080/03115518.2016.1206323.CrossRefGoogle Scholar
Lara, M.B., and Lukashevich, E.D., 2013, The first Triassic Diptera (Insecta) from South America, with review of Hennigmatidae: Zootaxa, v. 3710, p. 8192, doi:10.11646/zootaxa.3710.1.6.CrossRefGoogle ScholarPubMed
Lara, M.B., and Wang, B., 2016, New hemipteran insects (Eoscarterellidae, Scytinopteridae and Protopsyllidiidae) from the Upper Triassic Potrerillos Formation of Mendoza, Argentina: Paläontologische Zeitschrift, v. 90, p. 4961, doi:10.1007/s12542-016-0286-8.CrossRefGoogle Scholar
Lara, M.B., Rasnitsyn, A.P. and Zavattieri, A.M., 2014, Potrerilloxyela menendezi gen. et sp. nov. from the Late Triassic of Argentina: The oldest representative of Xyelidae (Hymenoptera: Symphyta) for Americas: Paleontological Journal, v. 48, p. 182190, doi:10.7868/S0031031X1402007X.CrossRefGoogle Scholar
Lara, M.B., Bashkuev, A., and Wang, B., 2015, Argentinopanorpa miguezi gen. et sp. nov.: First record of Triassic Mecoptera (Permochoristidae) from the Cuyo Basin (Mendoza, Argentina): Alcheringa, An Australasian Journal of Palaeontology, v. 39, p. 175180, doi:10.1080/03115518.2015.964059.CrossRefGoogle Scholar
Lara, M.B., Cariglino, B., and Zavattieri, A.M., 2017, Palaeoenvironmental interpretation of an Upper Triassic deposit in southwestern Gondwana (Argentina) based on an insect fauna, plant assemblage, and their interactions: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 476, p. 163180, doi:10.1016/j.palaeo.2017.03.029.CrossRefGoogle Scholar
Latreille, P.A., 1802, Histoire Naturelle, Générale et Particulière des Crustacés et des Insectes, Volume 3: Paris, Dufart, 467 p.Google Scholar
Latreille, P.A., 1829, Les Crustacés, les Arachnides et les Insectes, distributes en Families Naturelles: Paris, Chez Déterville, 581 p.CrossRefGoogle Scholar
Lerner, A.J., Lucas, S.G., and Lockley, M., 2017, First fossil horseshoe crab (Xiphosurida) from the Triassic of North America: Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, v. 286, p. 289302, doi:10.1127/njgpa/2017/0702.CrossRefGoogle Scholar
López Gamundí, O.R., 1994, Facies distribution in an asymmetric half graben: The northern Cuyo Basin (Triassic), western Argentina, in International Sedimentological Congress, 14th, Recife, Brazil, Abstracts S1: Recife, International Association of Sedimentologists, Federal University of Pernambuco, and Petróleo Brasileiro (Petrobrás), p. 67.Google Scholar
López Gamundí, O.R., 2010, Sedimentation styles and variability of organic matter types in the Triassic, non-marine half-grabens of west Argentina: Implications for petroleum systems in rift basins: Petroleum Geoscience, v. 16, p. 267272, doi:10.1144/1354-079309-912.CrossRefGoogle Scholar
Martins-Neto, R.G., and Gallego, O.F., 2009, The Triassic insect fauna from Argentina: Blattoptera and Coleoptera from Ischichuca Formation (Bermejo Basin) La Rioja province: Ameghiniana, v. 46, p. 361372.Google Scholar
Martins-Neto, R.G., Gallego, O.F., and Melchor, R.N., 2001, The first record of kazacharthids (Branchiopoda) in the Triassic of South America: Ameghiniana, v. 38, p. 3637.Google Scholar
Martins-Neto, R.G., Gallego, O.F., and Melchor, R.N., 2003, The Triassic insect fauna from South America (Argentina, Brazil and Chile): A checklist (except Blattoptera and Coleoptera) and descriptions of new taxa: Acta Zoologica Cracoviensia, v. 46, p. 229256.Google Scholar
Martins-Neto, R.G., Mancuso, A.C., and Gallego, O.F., 2005, The Triassic insect fauna from Argentina: Blattoptera from Los Rastros Formation (Bermejo Basin), La Rioja Province: Ameghiniana, v. 42, p. 705723.Google Scholar
Martins-Neto, R.G., Gallego, O.F., and Mancuso, A.C., 2006a, The Triassic insect fauna from Argentina: Coleoptera from Los Rastros Formation (Bermejo Basin), La Rioja Province: Ameghiniana, v. 43, p. 591609.Google Scholar
Martins-Neto, R.G., Brauckmann, C., Gallego, O.F., and Carmona, M.J., 2006b, The Triassic insect fauna from Argentina: Blattoptera, Glosselytrodea, Miomoptera, Auchenorrhyncha, and Coleoptera from the Los Rastros Formation (Bermejo Basin), Los Chañares locality (La Rioja Province): Clausthaler Geowissenschaften, v. 5, p. 19.Google Scholar
Martins-Neto, R.G., Gallego, O.F., and Zavattieri, A.M., 2007, A new Triassic insect fauna from Cerro Bayo, Potrerillos (Mendoza Province, Argentina): With descriptions of new taxa (Insecta: Blattoptera and Coleoptera): Alcheringa, An Australian Journal of Paleontology, v. 31, p. 199213, doi:10.1080/03115510701305173.Google Scholar
Martins Neto, R.G., Gallego, O.F., and Zavattieri, A.M., 2008, The Triassic insect fauna from Argentina: Coleoptera, Hemiptera and Orthoptera from the Potrerillos Formation, south of Cerro Cacheuta, Cuyana Basin: Alavesia, v. 2, p. 4758.Google Scholar
McLaughlin, P.A., ed., 1980, Comparative Morphology of Recent Crustacea: San Francisco, California, W. H. Freeman and Company, 177 p.Google Scholar
Morton, L.S., and Herbst, R., 2001, Nuevas especies del género Diplodon Spix (Bivalvia, Unionidea) del Jurásico Medio (Formación La Matilde), provincia de Santa Cruz, Argentina: Revista del Museo Argentino de Ciencias Naturales, v. 3, p. 159164.CrossRefGoogle Scholar
Novojilov, N., 1970, [Extinct Limnadioidea (Conchostraca-Limnadioidea)]: Moscow, Nauka, 238 p. (in Russian)Google Scholar
Olesen, J., 2007, Monophyly and phylogeny of Branchiopoda, with focus on morphology and homologies of branchiopod phyllopodous limbs: Journal of Crustacean Biology, v. 27, p. 165183, doi:10.1651/S-2727.1.CrossRefGoogle Scholar
Papú, O.H., 1993, Nuevos hallazgos del género Grapnelispora (Stover & Patridge) en la Formación Loncoche de Ranquil-Co, Cretácico Superior en la provincia de Mendoza, Argentina: Ameghiniana, v. 30, p. 143147.Google Scholar
Parras, A., and Griffin, M., 2013, Late Cretaceous (Campanian/Maastrichtian) freshwater to restricted marine mollusc fauna from the Loncoche Formation, Neuquén Basin, west-central Argentina: Cretaceous Research, v. 40, 190206, doi:10.1016/j.cretres.2012.07.002.CrossRefGoogle Scholar
Pickett, J.W., 1984, A new freshwater limuloid from the Middle Triassic of New South Wales: Palaeontology, v. 27, p. 609621.Google Scholar
Ramos, V.A., 1992, Control geotectónico de las cuencas triásicas de Cuyo: Boletín de Informaciones Petroleras, v. 9, p. 29.Google Scholar
Riek, E.F., 1955, A new xiphosuran genus from the Triassic sediments at Brookvale, New South Wales: Records of the Australian Museum, v. 23, p. 281282.CrossRefGoogle Scholar
Rogers, D.C., 2009, Branchiopoda (Anostraca, Notostraca, Laevicaudata, Spinicaudata, Cyclestherida),in Likens, G.F., ed., Encyclopedia of Inland Waters, Volume 2: Oxford, UK, Elsevier, p. 242249.CrossRefGoogle Scholar
Rogers, D.C., and Padhye, S., 2015, Review of the large branchiopod crustacean fauna of the Indian subcontinent (Anostraca, Notostraca, Laevicaudata, Spinicaudata, Cyclestherida): Journal of Crustacean Biology, v. 35, p. 392406, doi:10.1163/1937240X-00002327.CrossRefGoogle Scholar
Ruppert, E.E., ed., 2004, Invertebrate Zoology: A Functional Evolutionary Approach: Belmont, California, Thomson-Brooks/Cole, 963 p.Google Scholar
Rusconi, C., 1946a, Nuevos peces Triásicos de El Challao, Mendoza: Revista de la Sociedad de Historia y Geografía de Cuyo, v. 1, p. 115.Google Scholar
Rusconi, C., 1946b, Nuevos peces Triásicos de Uspallata: Revista de la Sociedad de Historia y Geografía de Cuyo, v. 141, p. 185190.Google Scholar
Rusconi, C., 1947, Acerca de Estheria minoprioi (Ostracoda) de Mendoza: Boletin de la Facultad de Ciencias Físicas y Naturales, v. 9, p. 753758.Google Scholar
Rusconi, C., 1948a, Algunas especies de Estherias del Triásico en Mendoza: Revista del Museo de Historia Natural, v. 2, p. 99202.Google Scholar
Rusconi, C., 1948b, Apuntes sobre el Triásico y el Ordovícico de El Challao, Mendoza: Revista del Museo de Historia Natural, v. 2, p. 165198.Google Scholar
Sars, G.O., 1867, Histoire Naturelle des Crustacés d'Eau Douce de Norvège: Les Malacostracés: Christiania [Copenhagen], Chr. Johnsen, 146 p.Google Scholar
Schrank, F., 1803, Favna Boica: Durchgedachte Geschichte der in Baiern Einheimischen und Zahmen Thiere, Volume 3: Landshut, Germany, Philipp Krüll, 372 p.Google Scholar
Shen, Y.B., Gallego, O.F., and Zavattieri, A.M., 2001, A new conchostracan genus from Triassic Potrerillos Formation, Argentina: Acta Geologica Leopoldensia, v. 24, p. 227236.Google Scholar
Spalletti, L.A., Fanning, C.M., and Rapela, C.W., 2008, Dating the Triassic continental rift in the southern Andes: The Potrerillos Formation, Cuyo Basin, Argentina: Geologica Acta, v. 6, p. 267283.Google Scholar
Stipanicic, P.N., and Zavattieri, A.M., 2002, Grupo Uspallata, in Stipanicic, P.N., and Marsicano, C.A., eds., Léxico Estratigráfico de la Argentina, Volume 8, Triásico: Asociación Geológica Argentina, Serie B (Didáctica y Complementaria), v. 26, p. 290294.Google Scholar
Tasch, P., 1987, Fossil Conchostraca of the Southern Hemisphere and continental drift, palaeontology, biostratigraphy and dispersal: Memoir of the Geological Society of America, v. 165, p. 1290.Google Scholar
Tassi, L.V., 2016, Estudio de la fauna de Spinicaudata a través del Triásico de Argentina y su recuperación luego del evento de extinción Permo-Triásico [Ph.D. thesis]: Córdoba, Argentina, Universidad Nacional de Córdoba, 261 p.Google Scholar
Tassi, L.V., Monti, M., Gallego, O.F., Zavattieri, A.M., and Lara, M.B., 2013, The first spinicaudatan (Crustacea-Diplostraca) from the Permo-Triassic continental sequences in South America and its paleoecological context: Alcheringa, An Australasian Journal of Palaeontology, v. 37, p. 189201, doi:10.1080/03115518.2013.736793.CrossRefGoogle Scholar
Tassi, L.V., Gallego, O.F., and Zavattieri, A.M., 2015, Triassic spinicaudatan fauna from the Cerro de Las Cabras Formation (Cuyo Basin), Mendoza Province (Argentina): Description of new species and revision of previous records: Ameghiniana, v. 52, p. 241264.CrossRefGoogle Scholar
Uliana, M.A., and Biddle, K.T., 1988, Mesozoic-Cenozoic paleogeographic and geodynamic evolution of southern South America: Revista Brasileira de Geografia, v. 18, p. 172190.Google Scholar
Van Roy, P., Orr, P.J., Botting, J.P., Muir, L.A., Vinther, J., Lefebvre, B., el Hariri, K., and Derek, E.G., 2010, Ordovician faunas of Burgess Shale type: Nature, v. 465, p. 215218, doi:10.1038/nature09038.CrossRefGoogle ScholarPubMed
Wagner, P., Haug, J.T., Sell, J., and Haug, C., 2018, A fossil crustacean from the Upper Triassic of southern Germany with kazacharthran affinities: Paleontological Research, v. 22, p. 5764, doi:10.2517/2017PR010.CrossRefGoogle Scholar
Zavattieri, A.M., and Batten, D.J., 1996, Miospores from Argentinian Triassic deposits and their potential for intercontinental correlation, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications: Dallas, Texas, American Association of Stratigraphic Palynologists Foundation, p. 767778.Google Scholar
Zavattieri, A.M., and Prámparo, M.B., 2006, Freshwater algae from the Upper Triassic Cuyana Basin of Argentina: Palaeoenvironmental implications: Palaeontology, v. 49, p. 11851209, doi:10.1111/j.1475-4983.2006.00596.x.CrossRefGoogle Scholar
Zavattieri, A.M., and Rojo, L.D., 2005, Estudio microflorístico de las Formaciones Potrerillos y Cacheuta (Triásico) en el sur del cerro Cacheuta, Mendoza, Argentina, Parte 2: Ameghiniana, v. 42, p. 513534.Google Scholar
Zhang, Q.Y., Hu, S.X., Zhou, C.Y., Lv, T., and Bai, J.K., 2009, New occurrence of Xiphosura in China: Progress in Natural Science, v. 19, p. 10901093.Google Scholar