Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-05T12:30:44.111Z Has data issue: false hasContentIssue false

Amsassia (calcareous alga) from the Lower Ordovician (Tremadocian) of western Newfoundland, and the biologic affinity and geologic history of the genus

Published online by Cambridge University Press:  21 September 2021

Dong-Jin Lee*
Affiliation:
College of Earth Sciences, Jilin University, Changchun, 130061, China
Robert J. Elias
Affiliation:
Department of Earth Sciences, University of Manitoba, Winnipeg, MBR3T 2N2, Canada
Brian R. Pratt
Affiliation:
Department of Geological Sciences, University of Saskatchewan, Saskatoon, SKS7N 5E2, Canada
*
*Corresponding author

Abstract

Modular coral-like fossils from Lower Ordovician (Tremadocian) thrombolitic mounds in the St. George Group of western Newfoundland were initially identified as Lichenaria and thought to include the earliest tabulate corals. They are here assigned to Amsassia terranovensis n. sp. and Amsassia? sp. A from the Watts Bight Formation, and A. diversa n. sp. and Amsassia? sp. B from the overlying Boat Harbour Formation. Amsassia terranovensis n. sp. and A. argentina from the Argentine Precordillera are the earliest representatives of the genus. Amsassia is considered to be a calcareous alga, possibly representing an extinct group of green algae. The genus originated and began to disperse in the Tremadocian, during the onset of the Great Ordovician Biodiversification Event, on the southern margin of Laurentia and the Cuyania Terrane. It inhabited small, shallow-marine reefal mounds constructed in association with microbes. The paleogeographic range of Amsassia expanded in the Middle Ordovician (Darriwilian) to include the Sino-Korean Block, as well as Laurentia, and its environmental range expanded to include non-reefal, open- and restricted-marine settings. Amsassia attained its greatest diversity and paleogeographic extent in the Late Ordovician (Sandbian–Katian), during the culmination of the Great Ordovician Biodiversification Event. Its range included the South China Block, Tarim Block, Kazakhstan, and Siberia, as well as the Sino-Korean Block and Laurentia, and its affinity for small microbial mounds continued during that time. In the latest Ordovician (Hirnantian), the diversity of Amsassia was reduced, its distribution was restricted to non-reefal environments in South China, and it finally disappeared during the end-Ordovician mass extinction.

UUID: http://zoobank.org/ef0abb69-10a6-46de-8c78-d6ec7de185fe

Type
Articles
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adachi, N., Ezaki, Y., and Liu, J., 2011, Early Ordovician shift in reef construction from microbial to metazoan reefs: Palaios, v. 26, p. 106114.10.2110/palo.2010.p10-097rCrossRefGoogle Scholar
Albanesi, G.L., Barnes, C.R., Trotter, J.A., and Williams, I.S., 2020, Comparative Lower–Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 549, 109115. https://doi.org/10.1016/j.palaeo.2019.03.016.CrossRefGoogle Scholar
Allen, J.S., Thomas, W.A., and Lavoie, D., 2010, The Laurentian margin of northeastern North America, in Tollo, R.P., Bartholomew, M.J., Hibbard, J.P., and Karabinos, P.M., eds., From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region: Geological Society of America Memoir 206, p. 7190.Google Scholar
Bassler, R.S., 1919, Cambrian and Ordovician: Baltimore, Maryland Geological Survey, The Johns Hopkins Press, 424 p.Google Scholar
Bassler, R.S., 1950, Faunal Lists and Descriptions of Paleozoic Corals: Geological Society of America Memoir 44, 315 p.Google Scholar
Bian, L.Z., and Zhou, X.P., 1990, Calcareous algae from the Sanqushan Formation (Upper Ordovician) at the border area between Zhejiang Province and Jiangxi Province: Journal of Nanjing University Earth Sciences, v. 3, p. 123. [in Chinese with English abstract]Google Scholar
Bornemann, J.G., 1886, Die Versteinerungen des cambrischen Schichtensystems der Insel Sardinien nebst vergleichenden Untersuchungen über analoge Vorkommnisse aus andern Ländern: Verhandlungen der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher, v. 51, no. 1, 148 p.Google Scholar
Bowerbank, J.S., 1864, A Monograph of the British Spongiadae, Vol. I: London, Ray Society, 290 p.Google Scholar
Boyce, W.D., 1989, Early Ordovician Trilobite Faunas of the Boat Harbour and Catoche Formations (St. George Group) in the Boat Harbour-Cape Norman Area, Great Northern Peninsula, Western Newfoundland: Newfoundland Department of Mines, Geological Survey Report 89-2, 175 p.Google Scholar
Boyce, W.D., and Stouge, S., 1997, Trilobite and conodont biostratigraphy of the St. George Group at Eddies Cove West, western Newfoundland: Newfoundland and Labrador Department of Mines and Energy, Current Research, Geological Survey Report 97-1, p. 183–200.Google Scholar
Boyce, W.D., McCobb, L.M.E., and Knight, I., 2011, Stratigraphic studies of the Watts Bight Formation (St. George Group), Port au Port Peninsula, western Newfoundland: Newfoundland and Labrador Department of Natural Resources, Current Research, Geological Survey Report 11-1, p. 215–240.Google Scholar
Boyce, W.D., McCobb, L.M.E., and Knight, I., 2013, Continuing stratigraphic and trilobite studies of the Watts Bight Formation (St. George Group), Port au Port Peninsula, western Newfoundland: Newfoundland and Labrador Department of Natural Resources, Current Research, Geological Survey Report 13-1, p. 205–222.Google Scholar
Boyer, D.L, and Droser, M.L., 2003, Shell beds of the Kanosh and Lehman formations of western Utah: paleoecological and paleoenvironmental interpretations: Brigham Young University Geology Studies, v. 47, p. 115.Google Scholar
Brezinski, D.K., Taylor, J.F., and Repetski, J.E., 2012, Sequential development of platform to off-platform facies of the Great American Carbonate Bank in the central Appalachians, in Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., and Sternbach, C.A., eds., The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia: AAPG Memoir 98, p. 383–420.10.1306/13331500M983500CrossRefGoogle Scholar
Butts, C., 1926, The Paleozoic rocks, in Adams, G.I., Butts, C., Stephenson, L.W., and Cooke, W., Geology of Alabama: Geological Survey of Alabama Special Report, v. 14, p. 41230.Google Scholar
Carrera, M.G., Astini, R.A., and Gomez, F.J., 2017, A lowermost Ordovician tabulate-like coralomorph from the Precordillera of western Argentina: a main component of a reef-framework consortium: Journal of Paleontology, v. 91, p. 7385.10.1017/jpa.2016.145CrossRefGoogle Scholar
Cho, S.H., Lee, B.-S., Lee, D.-J., and Choh, S.-J., 2021, The Ordovician succession of the Taebaek Group (Korea) revisited: old conodont data, new perspectives, and implications: Geosciences Journal, v. 25, p. 417431.10.1007/s12303-020-0044-5CrossRefGoogle Scholar
Cloud, P.E. Jr., and Barnes, V.E., 1948, The Ellenburger Group of Central Texas: Austin, University of Texas, Publication No. 4621, 473 p.Google Scholar
Dana, J.D., 1846, Structure and Classification of Zoophytes: Narrative of the United States Exploring Expedition during the Years 1838, 1839, 1840, 1841, 1842 Under the Command of Charles Wilkes, U.S.N., Vol. 7: Philadelphia, G.P. Putnam, 740 p.Google Scholar
Elias, R.J., Lee, D.-J., and Woo, S.-K., 2008, Corallite increase and mural pores in Lichenaria (Tabulata, Ordovician): Journal of Paleontology, v. 82, p. 377390.10.1666/06-114.1CrossRefGoogle Scholar
Elias, R.J., Lee, D.-J., and Pratt, B.R., 2021, The “earliest tabulate corals” are not tabulates: Geology, v. 49, p. 304308.10.1130/G48235.1CrossRefGoogle Scholar
Fan, J.-X., Shen, S.-Z., Erwin, D.H., Sadler, P.M., MacLeod, N., et al. , 2020, A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity: Science, v. 367, p. 272277.10.1126/science.aax4953CrossRefGoogle ScholarPubMed
Fan, R., Deng, S., Lu, Y., Tan, C., Ma, X., Lu, D., and Song, H., 2019, Relations between conodonts and U-Pb ages of the Sandbian and Katian in the south and west margins of the North China Platform, in Obut, O.T., Sennikov, N.V., and Kipriyanova, T.P., eds., 13th International Symposium of the Ordovician System, Novosibirsk, Russia (July 19–22, 2019), Contributions: Novosibirsk, Publishing House of SB RAS, p. 43.Google Scholar
Flower, R.H., 1978, St. George and Table Head cephalopod zonation in western Newfoundland: Geological Survey of Canada, Report of Activities, Paper 78-1A, p. 217–224.10.4095/103891CrossRefGoogle Scholar
Fortey, R.A., 1979, Lower Ordovician trilobites from the Catoche Formation (St. George Group), western Newfoundland, in Contributions to Canadian Paleontology: Geological Survey of Canada Bulletin 321, p. 61114.Google Scholar
Garwood, E.J., 1914, III.—Some new rock-building organisms from the lower Carboniferous beds of Westmorland: Geological Magazine, v. 1, p. 265271. https://doi.org/10.1017/S0016756800196955.CrossRefGoogle Scholar
Hall, J., 1847, Palaeontology of New York, Volume I, Containing Descriptions of the Organic Remains of the Lower Division of the New York System (Equivalent of the Lower Silurian Rocks of Europe): Albany, C. van Benthuysen, 338 p.Google Scholar
Hill, D., 1981, Part F, Coelenterata, Supplement 1, Rugosa and Tabulata, Volume 2, in Teichert, C., ed., Treatise on Invertebrate Paleontology: Boulder and Lawrence, Geological Society of America and University of Kansas Press, p. F379F762.Google Scholar
Hofmann, R., and Kehl, J.P., 2020, Diversity patterns and palaeoecology of benthic communities of the Kanosh Formation (Pogonip Group, Utah, western USA): Palaeobiodiversity and Palaeoenvironments, v. 100, p. 9931006.10.1007/s12549-020-00426-3CrossRefGoogle Scholar
Holmes, E.M., 1896, New marine algae from Japan: Journal of the Linnean Society of London, Botany, v. 31, p. 248260.10.1111/j.1095-8339.1896.tb00807.xCrossRefGoogle Scholar
Ji, Z., and Barnes, C.R., 1994, Lower Ordovician Conodonts of the St. George Group, Port au Port Peninsula, Western Newfoundland, Canada: Palaeontographica Canadiana No. 11, 149 p.10.1017/S002233600003434XCrossRefGoogle Scholar
Keller, M., 2012, The Argentine Precordillera: a little American carbonate bank, in Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., and Sternbach, C.A., eds., The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia: AAPG Memoir 98, p. 985–1000.10.1306/13331525M983514CrossRefGoogle Scholar
Knight, I., 1991, Geology of Cambro-Ordovician Rocks in the Port Saunders (NTS 12I/11), Castors River (NTS 12I/15), St. John Island (NTS 12I/14) and Torrent River (MTS 12I/10) Map Areas: Newfoundland Department of Mines and Energy, Geological Survey Report 91-4, 138 p.Google Scholar
Knight, I., and James, N.P., 1987, The stratigraphy of the Lower Ordovician St. George Group, western Newfoundland: the interaction between eustasy and tectonics: Canadian Journal of Earth Sciences, v. 24, p. 19271951.10.1139/e87-185CrossRefGoogle Scholar
Knight, I., Azmy, K., Greene, M.G., and Lavoie, D., 2007, Lithostratigraphic setting of diagenetic, isotopic, and geochemistry studies of Ibexian and Whiterockian carbonate rocks of the St. George and Table Head groups, western Newfoundland: Newfoundland and Labrador Department of Natural Resources, Current Research, Geological Survey Report 07-1, p. 55–84.Google Scholar
Knight, I., Azmy, K., Boyce, W.D., and Lavoie, D., 2008, Tremadocian carbonate rocks of the lower St. George Group, Port au Port Peninsula, western Newfoundland: lithostratigraphic setting of diagenetic, isotopic and geochemistry studies: Newfoundland and Labrador Department of Natural Resources, Current Research, Geological Survey Report 08-1, p. 115–149.Google Scholar
Kröger, B., and Penny, A., 2020, Early–Middle Ordovician seascape-scale aggregation pattern of sponge-rich reefs across the Laurentia paleocontinent: Palaios, v. 35, p. 524542.10.2110/palo.2020.039CrossRefGoogle Scholar
Kützing, F.T., 1843, Phycologia Generalis oder Anatomie, Physiologie und Systemkunde der Tange: Leipzig, F.A. Brockhaus, 458 p.Google Scholar
Lavoie, D., Desrochers, A., Dix, G., Knight, I., and Salad Hersi, O., 2012, The Great American Carbonate Bank of eastern Canada: an overview, in Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., and Sternbach, C.A., eds., The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia: AAPG Memoir 98, p. 499–523.10.1306/13331504M983503CrossRefGoogle Scholar
Lee, D.-C., Park, J., Woo, J., Kwon, Y.K., Lee, J.-G., et al. , 2012, Revised stratigraphy of the Xiazhen Formation (Upper Ordovician) at Zhuzhai, South China, based on palaeontological and lithological data: Alcheringa, v. 36, p. 387404.10.1080/03115518.2012.658724CrossRefGoogle Scholar
Lee, J.-H., and Riding, R., 2018, Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs: Earth-Science Reviews, v. 181, p. 98121.10.1016/j.earscirev.2018.04.003CrossRefGoogle Scholar
Lee, J.-H., and Riding, R., 2021, Keratolite-stromatolite consortia mimic domical and branched columnar stromatolites: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 571, 110288. https://doi.org/10.1016/j.palaeo.2021.110288.CrossRefGoogle Scholar
Lee, J.-H., Hong, J., Woo, J., Oh, J.-R., Lee, D.-J., and Choh, S.-J., 2016, Reefs in the early Paleozoic Taebaek Group, Korea: a review: Acta Geologica Sinica (English Edition), v. 90, p. 352367.Google Scholar
Lee, M., Sun, N., Choh, S.-J., and Lee, D.-J., 2014, A new Middle Ordovician reef assemblage from north-central China and its palaeobiogeographical implications: Sedimentary Geology, v. 310, p. 3040.10.1016/j.sedgeo.2014.05.003CrossRefGoogle Scholar
Lee, M., Park, H., Tien, N.V., Choh, S.-J., Elias, R.J., and Lee, D.-J., 2016, A new species of Amsassia from the Ordovician of Korea and South China: paleobiological and paleogeographical significance: Acta Geologica Sinica (English Edition), v. 90, p. 796806.10.1111/1755-6724.12723CrossRefGoogle Scholar
Lee, M., Elias, R.J., Choh, S.-J., and Lee, D.-J., 2018, Palaeobiological features of the coralomorph Amsassia from the Late Ordovician of South China: Alcheringa, v. 43, p. 1832.10.1080/03115518.2018.1471737CrossRefGoogle Scholar
Lee, Y.I., Hyeong, K., and Yoo, C.M., 2001, Cyclic sedimentation across a Middle Ordovician carbonate ramp (Duwibong Formation), Korea: Facies, v. 44, p. 6174.10.1007/BF02668167CrossRefGoogle Scholar
Li, Y.X., and Lin, B.Y., 1982, Subclass Tabulata, in Xi'an Institute of Geology and Mineral Resources, ed., Atlas of Fossils in Northwestern China, Shanxi-Gansu-Ningxia Region Volume 1, Early Paleozoic Section: Beijing, Geological Publishing House, p. 5083. [in Chinese]Google Scholar
Lin, B.Y., 1983, Ordovician tabulate corals of China: Acta Palaeontologica Sinica, v. 5, p. 487494. [in Chinese with English abstract]Google Scholar
Liu, L., Wu, Y., Bao, H., Jiang, H., Zheng, L., and Chen, Y., 2021, Diversity and systematics of Middle–Late Ordovician calcified cyanobacteria and associated microfossils from Ordos Basin, North China: Journal of Paleontology, v. 95, p. 123.10.1017/jpa.2020.82CrossRefGoogle Scholar
Lluch, J.R., 2002, Marine benthic algae of Namibia: Scientia Marina, v. 66, suppl. 3, p. 5258.10.3989/scimar.2002.66s35CrossRefGoogle Scholar
Luo, C., and Reitner, J., 2016, ‘Stromatolites’ built by sponges and microbes—a new type of Phanerozoic bioconstruction: Lethaia, v. 49, p. 555570.10.1111/let.12166CrossRefGoogle Scholar
Martin, E.L., Collins, W.J., and Spencer, C.J., 2020, Laurentian origin of the Cuyania suspect terrane, western Argentina, confirmed by Hf isotopes in zircon: Geological Society of America Bulletin, v. 132, p. 273290.10.1130/B35150.1CrossRefGoogle Scholar
Maslov, V.P., 1954, O nizhnem silure Vostochnoy Sibiri [On the Lower Silurian of eastern Siberia], in Shatskiy, N.S., ed., Voprosy Geologii Azii I [Problems of the Geology of Asia 1]: Moscow, Akademiya Nauk SSSR, p. 495531. [in Russian]Google Scholar
Michalak, I., and Messyasz, B., 2021, Concise review of Cladophora spp.: macroalgae of commercial interest: Journal of Applied Phycology, v. 33, p. 133166.10.1007/s10811-020-02211-3CrossRefGoogle Scholar
Miller, J.F., Loch, J.D., and Taylor, J.F., 2012, Biostratigraphy of Cambrian and Lower Ordovician strata in the Llano Uplift, central Texas, in Derby, J.R., Fritz, R.D., Longacre, S.A., Morgan, W.A., and Sternbach, C.A., eds., The Great American Carbonate Bank: The Geology and Economic Resources of the Cambrian–Ordovician Sauk Megasequence of Laurentia: AAPG Memoir 98, p. 187–202.10.1306/13331494M983498CrossRefGoogle Scholar
Nees, C.G., 1820, Horae Physicae Berolinenses Collectae ex Symbolis Virorum Doctorum: Bonn, Adolphi Marcus, p. 1123.Google Scholar
Okulitch, V.J., 1935, Tetradidae—a revision of the genus Tetradium: Transactions of the Royal Society of Canada, Section IV, v. 29, p. 4974.Google Scholar
Park, J., Lee, J.-H., Liang, K., and Choh, S.-J., 2021, Facies analysis of the Upper Ordovician Xiazhen Formation, southeast China: implications for carbonate platform development in South China prior to the onset of the Hirnantian glaciation: Facies, v. 67, 18. https://doi.org/10.1007/s10347-021-00626-z.CrossRefGoogle Scholar
Parodi, E.R., and Cáceres, E.J., 1995, Life history of Cladophora surera sp. nov. (Cladophorales, Ulvophyceae): Phycological Research, v. 43, p. 223231.10.1111/j.1440-1835.1995.tb00028.xCrossRefGoogle Scholar
Pratt, B.R., 1979, The St. George Group (Lower Ordovician), Western Newfoundland: Sedimentology, Diagenesis and Cryptalgal Structures [M.Sc. thesis]: St. John's, Memorial University of Newfoundland, 254 p.Google Scholar
Pratt, B.R., and James, N.P., 1982, Cryptalgal-metazoan bioherms of Early Ordovician age in the St. George Group, western Newfoundland: Sedimentology, v. 29, p. 543569.10.1111/j.1365-3091.1982.tb01733.xCrossRefGoogle Scholar
Pratt, B.R., and James, N.P., 1986, The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in epeiric seas: Sedimentology, v. 33, p. 313343.Google Scholar
Pratt, B.R., and James, N.P., 1989a, Coral-Renalcis-thrombolite reef complex of Early Ordovician age, St. George Group, western Newfoundland, in Geldsetzer, H.H.J., James, N.P., and Tebbutt, G.E., eds., Reefs, Canada and Adjacent Areas: Canadian Society of Petroleum Geologists Memoir 13, p. 224–230.Google Scholar
Pratt, B.R., and James, N.P., 1989b, Early Ordovician thrombolite reefs, St. George Group, western Newfoundland, in Geldsetzer, H.H.J., James, N.P., and Tebbutt, G.E., eds., Reefs, Canada and Adjacent Areas: Canadian Society of Petroleum Geologists Memoir 13, p. 231–240.Google Scholar
Pruss, S.B., and Knoll, A.H., 2017, Environmental covariation of metazoans and microbialites in the Lower Ordovician Boat Harbour Formation, Newfoundland: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 485, p. 917929.10.1016/j.palaeo.2017.08.007CrossRefGoogle Scholar
Pruss, S.B., Finnegan, S., Fischer, W.W., and Knoll, A.H., 2010, Carbonates in skeleton-poor seas: new insights from Cambrian and Ordovician strata of Laurentia: Palaios, v. 25, p. 7384.10.2110/palo.2009.p09-101rCrossRefGoogle Scholar
Reichenbach, H.G.L., 1828, Conspectus Regni Vegetabilis per Gradus Naturales Evoluti: Leipzig, Carolum Cnobloch, 294 p.10.5962/bhl.title.127418CrossRefGoogle Scholar
Rigby, J.K., and Hintze, L.F., 1977, Early Middle Ordovician corals from western Utah: Utah Geology, v. 4, p. 105111.Google Scholar
Sakai, Y., 1964, The species of Cladophora from Japan and its vicinity: Scientific Papers of the Institute of Algological Research, Faculty of Science, Hokkaido University, v. 5, p. 1104.Google Scholar
Sando, W.J., 1957, Beekmantown Group (Lower Ordovician) of Maryland: Geological Society of America Memoir 68, 161 p.Google Scholar
Scotese, C.R., 2014, Atlas of Cambrian and Early Ordovician Paleogeographic Maps (Mollweide Projection), Maps 81–88, Volume 5, The Early Paleozoic: PALEOMAP Atlas for ArcGIS, PALEOMAP Project, Evanston, IL.Google Scholar
Scrutton, C.T., 1981, The measurement of corallite size in corals: Journal of Paleontology, v. 55, p. 687688.Google Scholar
Scrutton, C.T., 1997, The Palaeozoic corals, I: origins and relationships: Proceedings of the Yorkshire Geological Society, v. 51, p. 177208.10.1144/pygs.51.3.177CrossRefGoogle Scholar
Sokolov, B.S., and Mironova, N.V., 1959, O novom rode ordovikskikh korallov Zapadnoy Sibiri i Severnogo Kazakhstana: Doklady Akademii Nauk SSSR, v. 129, p. 1150–1153. [in Russian]Google Scholar
Steele-Petrovich, H.M., 2009a, The biological reconstruction of Tetradium Dana, 1846: Lethaia, v. 42, p. 297311.10.1111/j.1502-3931.2008.00146.xCrossRefGoogle Scholar
Steele-Petrovich, H.M., 2009b, Biological affinity, phenotypic variation and palaeoecology of Tetradium Dana, 1846: Lethaia, v. 42, p. 383392.10.1111/j.1502-3931.2009.00151.xCrossRefGoogle Scholar
Steele-Petrovich, H.M., 2011, Replacement name for Tetradium Dana, 1846: Journal of Paleontology, v. 85, p. 802803.10.1666/10-137.1CrossRefGoogle Scholar
Stolley, E., 1893, Ueber silurische Siphoneen: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 2, p. 135146.Google Scholar
Suhr, J.N. von, 1840, Beiträge zur Algenkunde: Flora, v. 23, p. 289298.Google Scholar
Sun, N., Elias, R.J., and Lee, D.-J., 2014, The biological affinity of Amsassia: new evidence from the Ordovician of North China: Palaeontology, v. 57, p. 10671089.10.1111/pala.12106CrossRefGoogle Scholar
Taylor, J.F., 2015, Introduction, in Taylor, J.F., and Loch, J.D., eds., The Ordovician Exposed: 12th International Symposium on the Ordovician System, Harrisonburg, Virginia: Post-Meeting Field Trip: The Central Appalachians: Micropaleontology Press, Stratigraphy, v. 12, Online Supplement, p. 7–10. http://www.micropress.org/micropen2/articles/1/9/91403_articles_article_file_1939.pdf.Google Scholar
Taylor, J.F., Loch, J.D., Repetski, J.E., and Brezinski, D.K., 2015, Furongian and Tremadocian platform carbonates of the Cumberland Valley and southernmost Nittany Arch, in Taylor, J.F., and Loch, J.D., eds., The Ordovician Exposed: 12th International Symposium on the Ordovician System, Harrisonburg, Virginia: Post-Meeting Field Trip: The Central Appalachians: Micropaleontology Press, Stratigraphy, v. 12, Online Supplement, p. 31–50. http://www.micropress.org/micropen2/articles/1/9/91403_articles_article_file_1939.pdf.Google Scholar
Titlyanov, E.A., Titlyanova, T.V., Li, X., and Huang, H., 2017, Coral Reef Marine Plants of Hainan Island: London, Academic Press, 243 p.Google Scholar
Torsvik, T.H., and Cocks, L.R.M., 2013, New global palaeogeographical reconstructions for the early Palaeozoic and their generation, in Harper, D.A.T., and Servais, T., eds., Early Palaeozoic Biogeography and Palaeogeography: Geological Society Memoir 38, p. 5–24.10.1144/M38.2CrossRefGoogle Scholar
Vachard, D., Clausen, S., Palafox, J.J., Buitrón, B.E., Devaere, L., Hayart, V., and Régnier, S., 2017, Lower Ordovician microfacies and microfossils from Cerro San Pedro (San Pedro de la Cueva, Sonora, Mexico), as a westernmost outcrop of the newly defined Nuia Province: Facies, v. 63, 18. https://doi.org/10.1007/s10347-017-0497-9.CrossRefGoogle Scholar
van den Hoek, C., 1963, Revision of the European Species of Cladophora: Leiden, E.J. Brill, 248 p.Google Scholar
Vologdin, A.G., 1932, Arkheotsiaty Sibiri, vyp. 2, Fauna kembriyskikh izvestnyakov Altaya: Moscow and Leningrad, Gosudarstvennoe Nauchno-Technicheskoe Geologo-Razvedochnoe Izdatelskogo, 106 p. [in Russian]Google Scholar
Walcott, C.D., 1905, Cambrian Brachiopoda with descriptions of new genera and species: Proceedings of the U.S. National Museum, v. 28, p. 227337.10.5479/si.00963801.1395.227CrossRefGoogle Scholar
Wang, G., Zhan, R., and Percival, I.G., 2019, The end-Ordovician mass extinction: a single-pulse event?: Earth-Science Reviews, v. 192, p. 1533.10.1016/j.earscirev.2019.01.023CrossRefGoogle Scholar
Wang, G., Wei, X., Luan, X., Wu, R., Percival, I.G., and Zhan, R., 2020, Constraining the biotic transitions across the end-Ordovician mass extinction in South China: bio- and chemostratigraphy of the Wulipo Formation in the Meitan area of northern Guizhou: Geological Journal, v. 55, p. 63996411.10.1002/gj.3816CrossRefGoogle Scholar
Webby, B.D., 2002, Patterns of Ordovician reef development, in Kiessling, W., Flügel, E., and Golonka, J., eds., Phanerozoic Reef Patterns: SEPM Special Publication 72, p. 129–179.10.2110/pec.02.72.0129CrossRefGoogle Scholar
Webby, B.D., Elias, R.J., Young, G.A., Neuman, B.E.E., and Kaljo, D., 2004, Corals, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 124146.10.7312/webb12678-016CrossRefGoogle Scholar
West, R.R., 2011a, Part E, Revised, Volume 4, Chapter 2A: Introduction to the fossil hypercalcified chaetetid-type Porifera (Demospongiae): Treatise Online, no. 20, 79 p. https://doi.org/10.17161/to.v0i0.4137.CrossRefGoogle Scholar
West, R.R., 2011b, Part E, Revised, Volume 4, Chapter 2C: Classification of the fossil and living hypercalcified chaetetid-type Porifera (Demospongiae): Treatise Online, no. 22, 24 p. https://doi.org/10.17161/to.v0i0.4139.CrossRefGoogle Scholar
Winchell, N.H., and Schuchert, C., 1895, Sponges, graptolites and corals from the Lower Silurian of Minnesota, in Lesquereux, L., Woodward, A., Thomas, B.W., Schuchert, C., Ulrich, E.O., and Winchell, N.H., The Geology of Minnesota, Vol. III, Pt. I of the Final Report, Paleontology: Minneapolis, Minnesota Geological and Natural History Survey, p. 55–95.Google Scholar
Wood, A., 1941, The lower Carboniferous calcareous algae Mitcheldeania Wethered and Garwoodia, gen. nov.: Proceedings of the Geologists’ Association, v. 52, p. 216226.10.1016/S0016-7878(41)80006-6CrossRefGoogle Scholar
Yang, S.W., Jin, C.T., and Zhou, X.Y., 1978, Subclass Tabulata, in Guizhou Stratigraphic and Paleontological Working Team, ed., Atlas of Fossils in Southwestern China, Guizhou Region Volume 1, Cambrian–Devonian: Beijing, Geological Publishing House, p. 161251. [in Chinese]Google Scholar
Yue, L., and Kershaw, S., 2003, Reef reconstruction after extinction events of the latest Ordovician in the Yangtze Platform, South China: Facies, v. 48, p. 269284.10.1007/BF02667544CrossRefGoogle Scholar
Zhang, Y., Zhan, R., Zhen, Y., Wang, Z., Yuan, W., Fang, X., Ma, X., and Zhang, J., 2019, Ordovician integrative stratigraphy and timescale of China: Science China Earth Sciences, v. 62, p. 6188.10.1007/s11430-017-9279-0CrossRefGoogle Scholar