Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-04T21:00:50.450Z Has data issue: false hasContentIssue false

Affinities and Taphonomy of a Cambrian Discoid from Guizhou, South China

Published online by Cambridge University Press:  15 October 2015

Xinglian Yang
Affiliation:
College of Resource and Environment, Guizhou University, Guiyang 550003, China , , <[email protected]>, <[email protected]>, State Key Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, the Chinese Academy of Sciences, Nanjing 210008, China
Yuanlong Zhao
Affiliation:
College of Resource and Environment, Guizhou University, Guiyang 550003, China , , <[email protected]>, <[email protected]>,
Weiyi Wu
Affiliation:
Dean's Office, Guizhou Institute of Technology, Guiyang 550003, China
Zongyuan Sun
Affiliation:
College of Resource and Environment, Guizhou University, Guiyang 550003, China , , <[email protected]>, <[email protected]>,
Haolin Zheng
Affiliation:
College of Resource and Environment, Guizhou University, Guiyang 550003, China , , <[email protected]>, <[email protected]>,
Yajie Zhu
Affiliation:
College of Resource and Environment, Guizhou University, Guiyang 550003, China , , <[email protected]>, <[email protected]>,

Abstract

Disc-like fossils from siltstones of the Taozichong Formation (Cambrian) in the Qingzhen area, Guizhou, South China are reported here. They are similar to some Ediacaran and Phanerozoic discoidal fossils, and assigned to Tirasiana? disciformis? Palij, 1976. Based on the study of 43 specimens, dewatering or fluid escape structures, soft-sediment loading, scratch circles or other inorganic origins are ruled out, and the fossil is interpreted as a discoidal body fossil of unknown affinities rather than trace fossils. Energy-dispersive X-ray spectroscopy and elemental mapping analyses reveal that the discoid fossils contain higher concentrations of C, Fe, and P than the surrounding matrix, indicating the possible presence of pyrite, apatite, and organic carbon as a result of authigenic mineralization in association with decay and early diagenetic processes. The possible presence of extracellular polymeric substance suggests that the discs were surrounded by thin microbial mats composed primarily of extracellular polymeric substances, which facilitated their fossilization by promoting conditions that are favorable to secondary mineral precipitation. The new specimens provide useful information about the phylogenetic affinities of these early discoidal fossils and help us to better understand the taphonomic modes of non-biomineralizing organisms in Ediacara-type and Burgess Shale-type biotas.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, S. Y. and Babcock, L. E. 2012. Microorganism-mediated preservation of Planolites, a common trace fossil from the Harkless Formation, Cambrian of Nevada, U.S.A. Sedimentary Geology, 263–264:3035.CrossRefGoogle Scholar
Anderson, E. P., Schiffbauer, J. D., and Xiao, S. H. 2011. Taphonomic study of Ediacaran organic-walled fossils confirms the importance of clay minerals and pyrite in Burgess Shale-type preservation. Geology, 39:643646.CrossRefGoogle Scholar
Babcock, L. E. 2011. Exceptionally preserved Conchopeltis (Cnidaria) from the Ordovician of New York, U.S.A.: Taphonomic inferences. Memoirs of the Association of Australasian Palaeontologists, 41:1419.Google Scholar
Babcock, L. E. and Ciampaglio, C. N. 2007. Frondose fossil from the Conasauga Formation (Cambrian: Drumian Stage) of Georgia, U.S.A. Association of Australasian Palaeontologists Memoir, 37:555562.Google Scholar
Bell, C. M., Angseesing, P. A., and Townsend, M. J. 2001. A chondrophorine (medusoid hydrozoan) from the Lower Cretaceous of Chile. Palaeontology, 44:10111023.CrossRefGoogle Scholar
Borkow, P. S. and Babcock, L. E. 2003. Turning pyrite concretions outside-in: Role of biofilms in pyritization of fossils. The Sedimentary Record, 1 (3):47.CrossRefGoogle Scholar
Butterfield, N. J. 1995. Secular distribution of Burgess Shale-type preservation. Lethaia, 28:113.CrossRefGoogle Scholar
Butterfield, N. J., Balthasar, U., and Wilson, L. A. 2007. Fossil diagenesis in the Burgess Shale. Palaeontology, 50:537543.CrossRefGoogle Scholar
Cai, Y. P., Schiffbauer, J. D., Hua, H., and Xiao, S. H. 2012. Preservational modes in the Ediacaran Gaojiashan Lagerstätte: Pyritization, aluminosilicification, and carbonaceous compression. Palaeogeography, Palaeoclimatology, Palaeoecology, 109–117:326328.Google Scholar
Chen, M. E., Liu, H. Y., Sha, Q. A., and Lao, Q. Y. 1982. A discussion of some problems in current Precambrian paleontologic research of China. Geological Review, 28:461466. (In Chinese).Google Scholar
Chen, M. E. 1984. A discussion about the “medusa fossils” from Wuhangshan Group of late Precambrian, Liaodong Peninsula, China. Scientia Geologica Sinica, 1:5157. (In Chinese) Google Scholar
Conway Morris, S. 1986. The community structure of the middle Cambrian Phyllopod Bed (Burgess Shale). Palaeontology, 29:423467.Google Scholar
Droser, M. L., Jensen, S., and Gehling, J. G. 2002. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment. Proceedings of the National Academy of Science of the United States of America, 99:1257212576.CrossRefGoogle ScholarPubMed
Fedonkin, M. A. 1990. Systematic description of Vendian metazoan, p. 71120. In Sokolov, B. S. and Ivanovskij, A. B. (eds.), The Vendian System. Paleontology 1. Springer-Verlag, Berlin.Google Scholar
Fedonkin, M. A. 2003. The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7:941.CrossRefGoogle Scholar
Foyn, S. and Glaessner, M. F. 1979. Platysolenites, other animal fossils, and the Precambrian–Cambrian transition in Norway. Norsk Geologisk Tidsskrift, 59:2546.Google Scholar
Francis, L. 1985. Design of a small cantilevered sheet: The sail of Velella velella . Pacific Science, 39:115.Google Scholar
Gabbott, S. E., Hou, X. G., Norry, M. J., and Siveter, D. J. 2004. Preservation of early Cambrian animals of the Chengjiang biota. Geology, 32:901904.CrossRefGoogle Scholar
Gaines, R. R., Briggs, D. E. G., and Zhao, Y. L. 2008. Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology, 36:755758.CrossRefGoogle Scholar
Gaines, R. R., Mering, J. A., Zhao, Y. L., and Peng, J. 2011. Stratigraphic and microfacies analysis of the Kaili Formation, a candidate GSSP for the Cambrian Series 2−Series 3 Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 311:171183.CrossRefGoogle Scholar
Gehling, J. G. 1999. Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios, 14:4057.CrossRefGoogle Scholar
Gehling, J. G., Narbonne, G. M., and Anderson, M. M. 2000. The first named Ediacaran body fossil, Aspidella terranovica . Palaeontology, 43:427456.CrossRefGoogle Scholar
Gehling, J. G. and Rigby, J. K. 1996. Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. Journal of Paleontology, 70:185195.CrossRefGoogle Scholar
Gerdes, G., Claes, M., Dunajtschik-Piewak, K., Riege, H., Krumbein, W. E., and Reineck, H.-E. 1993. Contribution of microbial mats to sedimentary surface structures. Facies, 29:6174.CrossRefGoogle Scholar
Grazhdankin, D. and Gerdes, G. 2007. Ediacaran microbial colonies. Lethaia, 40:201210.CrossRefGoogle Scholar
Hagadorn, J. W., Fedo, C. M., and Waggoner, B. M. 2000. Early Cambrian Ediacaran-type fossils from California. Journal of Paleontology, 74:731740.2.0.CO;2>CrossRefGoogle Scholar
Hagadorn, J. W., Dott, R. H. Jr., and Damrow, D. 2002. Stranded on a late Cambrian shoreline: Medusae from central Wisconsin. Geology, 30:147150.2.0.CO;2>CrossRefGoogle Scholar
He, T. and Yang, X. 1982. Lower Cambrian Meishucun stage of western Yangtze stratigraphic region and its small shelly fossils. Bulletin of the Chengdu Institute of Geology and Mineral Resources. Chinese Academy of Geological Sciences, 3:6995. (In Chinese) Google Scholar
Hofmann, H. J., O'Brien, S. J., and King, A. F. 2008. Ediacaran biota on bonavista peninsula, Newfoundland, Canada. Journal of Paleontology, 82:136.CrossRefGoogle Scholar
Jenkins, R. J. F. 1989. The ‘supposed terminal Precambrian extinction event’ in relation to the Cnidaria. Memoirs of the Association of Australasian Palaeontologists, 8:307317.Google Scholar
Jenkins, R. J. F. 1992. Functional and ecological aspects of Ediacaran assemblages, p. 131176. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.CrossRefGoogle Scholar
Jensen, S., Gehling, J. G., Droser, M. L., and Grant, S. W. F. 2002. A scratch circle origin for the medusoid fossil Kullingia . Lethaia, 35:291299.CrossRefGoogle Scholar
Knight, J. B. 1952. Primitive fossil gastropods and their bearing on gastropod classification. Smithsonian Miscellaneous Collections, 117:156.Google Scholar
Laflamme, M., Schiffbauer, J. D., Narbonne, G. M., and Briggs, D. E. 2010. Microbial biofilms and the preservation of the Ediacara biota. Lethaia, 44:203213.CrossRefGoogle Scholar
Landing, E. and Narbonne, G. M. 1992. Scenella and a chondrophorine (medusoid hydrozoan) from the basal Cambrian (Placentian) of Newfoundland. Journal of Paleontology, 66:338.CrossRefGoogle Scholar
MacGabhann, B. A. 2007. Discoidal fossils of the Ediacaran Biota: A review of current understanding, p. 297313. In Vickers-Rich, P. and Komarower, P. (eds.), The Rise and Fall of the Ediacaran Biota. Volume 286, London.Google Scholar
Narbonne, G. M. and Aitken, J. D. 1990. Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology, 33:945980.Google Scholar
Narbonne, G. M., Myrow, P., Landing, E., and Anderson, M. M. 1991. A chondrophorine (medusoid hydrozoan) from the basal Cambrian (Placentian) of Newfoundland. Journal of Paleontology, 65:186191.CrossRefGoogle Scholar
Narbonne, G. M. 2005. The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences, 33:421442.CrossRefGoogle Scholar
Orr, P. J., Briggs, D. E. G., and Kearns, S. L. 1998. Cambrian Burgess Shale animals replicated in clay minerals. Science, 28:11731175.CrossRefGoogle Scholar
Osgood, R. G. 1970. Trace fossils of the Cincinnati area. Palaeontographica Americana, 6:281437.Google Scholar
Palij, V. M. 1976. Ostatki besskeletnoi fauny i sleedy zhiznedeyatelnosti iz otlozheniy verkhnego dokebriya I nizhnego kembriya Podolii, p. 6377. In Tyabenko, V. A. (ed.), Paleontologiya i Stratigrafiya Verkhnego Dokembriya i Nizhnego Paleozoya Yugo–Zapada Vostochno–Evropeiskoi Platformy. Naukova Dumka Kiev.Google Scholar
Petrovich, R. 2001. Mechanisms of fossilization of the soft-bodied and lightly armored faunas of the Burgess Shale and of some other classical localities. American Journal of Science, 301:683726.CrossRefGoogle Scholar
Seilacher, A. 1984. Late Precambrian and early Cambrian metazoa: Preservational or real extinctions? p. 159168. In Holland, H. D. and Trendall, A. F. (eds.), Patterns of Change in Earth Evolution. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Seilacher, A. 1991. “Medusoid” salt pseudomorphs. Journal of Paleontology, 65:330.CrossRefGoogle Scholar
Stanley, G. D. and Kanie, Y. 1985. The first Mesozoic chondrophorine (Medusoid hydrozoan), from the Lower Cretaceous of Japan. Palaeontology, 28:101109.Google Scholar
Steiner, M., Li, G. X., Qian, Y., Zhu, M. Y., and Erdtmann, B.-D. 2007. Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254:6799.CrossRefGoogle Scholar
Toporski, J. K. W., Steele, A., Westall, F., Avci, R., Martill, D. M., and McKay, D. S. 2002. Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochimica et Cosmochimica Acta, 66:17731791.CrossRefGoogle Scholar
Wang, Y. G., Yin, G. Z., Zheng, S. F., and Qian, Y. 1984. Stratigraphy of the boundary Sinian–Cambrian in the Yangzte Area of Guizhou, p. 136. In Wang, Y. G., et al. (eds.), The Upper Precambrian and Sinian–Cambrian Boundary in Guizhou. Guizhou People's Publishing House, Guiyang. (In Chinese) Google Scholar
Webers, G. F. and Yochelson, E. L. 1999. A revision of Palaeacmaea (Upper Cambrian) (?Cnidria). Journal of Paleontology, 73:598607.CrossRefGoogle Scholar
Xiao, S. H. and Laflamme, M. 2009. On the eve of animal radiation: Phylogeny, ecology and evolution of the Ediacara biota. Trends in Ecology and Evolution, 24:3140.CrossRefGoogle ScholarPubMed
Yin, G. Z. 1987. Cambrian System, Regional Geology of Guizhou. Beijing, Geological Publishing House, p. 4163. (In Chinese) Google Scholar
Yin, G. Z. 1990. The Cambrian divisions of Guizhou. Geology of Guizhou, 7:283292. (In Chinese) Google Scholar
Yochelson, E. L., Stürmer, W., and Stanley, G. D. Jr. 1983. Plectodiscus discoideus (Rauff): A redescription of a chondrophorine from the Early Devonian Hunsriick Slate, West Germany. Paläontologische Zeitschrift, 57:3968.CrossRefGoogle Scholar
Yochelson, E. L. 1984. North American Middle Ordovician Scenella and Macroscenella as possible chondrophorine coelenterates. Palaeontographica Americana, 54:148153.Google Scholar
Yochelson, E. L. and Gil Cid, D., 1984. Reevaluation of the systematic position of Scenella . Lethaia, 17:331340.CrossRefGoogle Scholar
Zhu, M. Y., Babcock, L. E., and Steiner, M. 2005. Fossilization modes in the Chengjiang Lagerstätte (Cambrian of China): Testing the role of organic preservation and diagenetic alteration in exceptional preservation. Palaeogeography, Palaeoclimatology, Palaeoecology, 220:3146.CrossRefGoogle Scholar
Zhu, M. Y. 2010. The origin and Cambrian explosion of animals: fossil evidence from China. Acta Palaeontologica Sinica, 49:269287. (In Chinese) Google Scholar