Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T12:38:49.942Z Has data issue: false hasContentIssue false

Adriosaurus and the affinities of mosasaurs, dolichosaurs, and snakes

Published online by Cambridge University Press:  20 May 2016

Michael S. Y. Lee
Affiliation:
Department. of Zoology, The University of Queensland, Saint Lucia, Brisbane, Queensland 4072, Australia, ;
Michael W. Caldwell
Affiliation:
Paleobiology, Research Division, Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada; New Address, Department of Earth and Atmospheric Sciences, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G2E9,

Abstract

The poorly-known, long bodied, limb-reduced marine lizard Adriosaurus suessi Seeley, 1881, is reassessed. Adriosaurus and a number of other marine lizards are known from Upper Cretaceous (Upper Cenomanian-Lower Turonian) marine carbonate rocks exposed along the Dalmatian coast of the Adriatic Sea, from Komen, Slovenia, to Hvar Island, Croatia. A revised vertebral count reveals 10 cervical, 29 dorsal, and at least 65 caudal vertebrae. The projections previously interpreted as hypapophyses are instead transverse processes. Openings on the anterior part of the skull, previously described as external nares, are probably internal nares. Important features not noted previously include accessory articulations on all presacral vertebrae, pachyostosis of dorsal vertebrae and ribs, and the presence of two pygal vertebrae. Phylogenetic analysis of 258 osteological characters and all the major squamate lineages suggests that Adriosaurus and dolichosaurs are successive sister-taxa to snakes. This is consistent with their long-bodied, limb-reduced morphology being intermediate between typical marine squamates (e.g., mosasaurs) and primitive marine snakes (pachyophiids). The analysis further reveals that up to five successive outgroups to living snakes (pachyophiids, Adriosaurus, dolichosaurs, Aphanizocnemus, and mosasauroids) are all marine, suggesting a marine (or at least, semi-aquatic) phase in snake origins. These phylogenetic results are robust whether multistate characters are ordered or unordered, thus refuting recent suggestions that snakes cluster with amphisbaenians and dibamids (rather than aquatic lizards) if multistate characters are left unordered. Also, the recent suggestion that Pachyrhachis shares synapomorphies with advanced snakes (macrostomatans) is shown to be poorly supported, because the reinterpretations of the relevant skull elements are unlikely and, even if accepted, the character states proposed to unite Pachyrhachis and advanced snakes are also present in more basal snakes and/or the nearest lizard outgroups, and are consequently primitive for snakes.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, G. L. Jr. 1997. A phylogenetic revision of North American and Adriatic Mosasauroidea; Pp. 293332. In Callaway, J. M. and Nicholls, E. L. (eds.), Ancient Marine Reptiles. Academic Press: San Diego.CrossRefGoogle Scholar
Bellairs, A. D'A., and Underwood, G. 1951. The origin of snakes. Biological Reviews, 26:193237.Google ScholarPubMed
Berman, D. S. 1973. Spathorhynchus fossorium, a middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia, 1973:704721.CrossRefGoogle Scholar
Bremer, K. 1988. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution, 42:795803.CrossRefGoogle ScholarPubMed
Caldwell, M. W. 1999a. Squamate phylogeny and the relationships of snakes and mosasauroids. Zoological Journal of the Linnean Society, 125:115147.CrossRefGoogle Scholar
Caldwell, M. W. 1999b. Description and phylogenetic relationships of a new species of Coniasaurus Owen, 1850 (Squamata). Journal of Vertebrate Paleontology, 19:438455.CrossRefGoogle Scholar
Caldwell, M. W. 2000. On the phylogenetic relationships of Pachyrhachis within snakes: A response to Zaher (1998). Journal of Vertebrate Paleontology, 20:181184.CrossRefGoogle Scholar
Caldwell, M. W. In press. An aquatic squamate reptile from the English Chalk: Dolichosaurus longicollis Owen, 1850. Journal of Vertebrate Paleontology.Google Scholar
Caldwell, M. W., Carroll, R. L., and Kaiser, H. 1995. The pectoral girdle and forelimb of Carsosaurus marchesetti (Aigialosauridae), with a preliminary phylogenetic analysis of mosasauroids and varanoids. Journal of Vertebrate Paleontology, 15:516531.CrossRefGoogle Scholar
Caldwell, M. W., and Cooper, J. 1999. Redescription, palaebiogeography, and palaeoecology of Coniasaurus crassidens Owen, 1850 (Squamata) from the English Chalk (Cretaceous; Cenomanian). Zoological Journal of the Linnean Society. 127:423452.CrossRefGoogle Scholar
Caldwell, M. W., and Lee, M. S. Y. 1997. A snake with legs from the marine Cretaceous of the Middle East. Nature, 386:705709.CrossRefGoogle Scholar
Camp, C. L. 1923. Classification of the lizards. Bulletin of the American Museum of Natural History, 48:289481.Google Scholar
Carroll, R. L. 1988. Vertebrae Paleontology and Evolution. W.H. Freeman, New York.Google Scholar
Carroll, R. L. and deBraga, M. 1992. Aigialosaurs: mid-Cretaceous varanoid lizards. Journal of Vertebrate Paleontology, 12:6686.CrossRefGoogle Scholar
Carroll, R. L. Bossy, K. A., Milner, A. C., Andrews, S. M., and Wellstead, C. F. 1998. Lepospondyli, Handbuch der Paläoherpetologie, Volume 1. Friedrich Pfeil Verlag, Munchen.Google Scholar
Colbert, E. H. 1970. The Triassic Gliding reptile Icarosaurus . Bulletin of the American Museum of Natural History, 143:85142.Google Scholar
Cope, E. D. 1869. On the reptilian order Pythonomorpha and Streptosauria. Proceedings of the Boston Society of Natural History 12:250261.Google Scholar
Dal Sasso, C. and Pinna, G. 1997. Aphanizocnemus libanensis n.gen. n. sp., a new dolichosaur (Reptilia, Varanoidea) from the Upper Cretaceous of Lebanon. Paleontologia Lombarda della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, new series, 7:331.Google Scholar
Dal Sasso, C. and Renesto, S. 1999. Aquatic varanoid reptiles from the Cenomanian (upper Cretaceous) lithographic limestones of Lebanon. Rivista della Museo Civico di Scienze Naturale, “E. Caffi”, Bergamo, 20:6369.Google Scholar
DeBraga, M. and Carroll, R. L. 1993. The origin of mosasaurs as a model of macroevolutionary patterns and processes. Evolutionary Biology 27:245322.Google Scholar
de Buffrénil, V., and Mazin, J.-M. 1989. Bone histology of Claudiosaurus germaini (Reptilia, Claudiosauridae) and the problem of pachyostosis in aquatic tetrapods. Historical Biology, 2:311322.CrossRefGoogle Scholar
de Buffrénil, V., Mazin, J.-M., and Rage, J.-C. 1993. La “pachyostose” vertébrale de Simoliophis (Reptilia, Squamata): données comparatives et considérations fonctionelles. Annales de Paléontologie (Vertebres-Invertebres), 79:315335.Google Scholar
De Queiroz, K., and Gauthier, J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23:449480.CrossRefGoogle Scholar
Domning, D., and de Buffrénil, V. 1991. Hydrostasis in the Sirenia. Marine Mammal Science, 7:331368.CrossRefGoogle Scholar
Edmund, A. G. 1969. Dentition; Pp. 117200. In Gans, C. and Bellairs, A. d'A. (eds.), Biology of the Reptilia, Volume 1. Academic Press: New York.Google Scholar
Estes, R., De Queiroz, K., and Gauthier, J. 1988. Phylogenetic relationships within Squamata; p. 119281. In Estes, R. and Pregill, G. (eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford.Google Scholar
Fraser, N. C. 1997. Genesis of snakes in exodus from the sea. Nature, 386:651652.CrossRefGoogle Scholar
Gauthier, J. 1982. Fossil xenosaurid and anguid lizards from the early Eocene Wasatch Formation, southeast Wyoming, and a revision of Anguoidea. Contributions to Geology, University of Wyoming, 21:754.Google Scholar
Gauthier, J., Estes, R., and de Queiroz, K. 1988. A phylogenetic analysis of the Lepidosauria; Pp. 1598. In Estes, R. and Pregill, G. (eds.), Phylogenetic Relationships of the Lizard Families. Stanford University Press, Stanford.Google Scholar
Greer, A. E. 1985. The relationships of the lizard genera Anelytropsis and Dibamus . Journal of Herpetology, 19:116156.CrossRefGoogle Scholar
Greer, A. E. 1989. Biology and Evolution of Australian Lizards. Surrey Beatty, Sydney.Google Scholar
Kramberger, K. G. 1892. Aigialosaurus, eine neue Eidechse aus den Kreideschiefern der Insel Lesina mit Rücksicht auf die bereits beschriebenen Lacertiden von Comen und Lesina. Glasnik huvatskoga naravolosovnoga derstva (Societas historico-matulis croatica) u Zagrebu, 7:74106.Google Scholar
Jurkovsek, B., Toman, M., Ogorelec, B., Sribar, L., Drobne, K., and Poljak, M. 1996. Geological Map of the Southern Part of the Trieste-Komen Plateau. Institut za Geologijo, Geotechniko in Geofiska, Lljubljana, SloveniaGoogle Scholar
Kaiser, H. E. 1966. Functional anatomy of breathing and balance in seacows (Sirenia). Anatomical Record, 55:246.Google Scholar
Kluge, A. G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Miscellaneous Publications, Museum of Zoology, University of Michigan, 173:154.Google Scholar
Kornhuber, A. 1873. Über einen neuen fossilen saurier aus Lesina. Herausgegeben von derk. k. geologischen Reichsanstalt, Wien 5:7590.Google Scholar
Lee, M. S. Y. 1997. The phylogeny of varanoid lizards and the affinities of snakes. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 352:5391.CrossRefGoogle Scholar
Lee, M. S. Y. 1998. Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate phylogeny. Biological Journal of the Linnean Society, 65:369453.CrossRefGoogle Scholar
Lee, M. S. Y. In press. Squamate phylogeny, soft anatomy and diffuse homoplasy. Zoologica Scripta.Google Scholar
Lee, M. S. Y., and Caldwell, M. W. 1998. Anatomy and relationships of Pachyrhachis, a primitive snake with hindlimbs. Philosophical Transactions: Biological Sciences, 353:15211552.CrossRefGoogle Scholar
Lee, M. S. Y., Caldwell, M. W., and Scanlon, J. S. 1999. A second primitive marine snake: Pachyophis woodwardi from the Cretaceous of Bosnia-Herzegovina. Journal of Zoology, 248:509520.CrossRefGoogle Scholar
Lingham-Soliar, T. 1994. The mosasaur Plioplatecarpus (Reptilia, Mosasauridae) from the Upper Cretaceous of Europe. Bulletin de L'Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre 59:137190.Google Scholar
McDowell, S. B., and Bogert, C. M. 1954. The systematic position of Lanthanotus and the affinities of anguinomorphan lizards. Bulletin of the American Museum of Natural History, 105:1142.Google Scholar
Motani, R., You, H., and McGowan, C. 1996. Eel-like swimming in the earliest ichthyosaurs. Nature, 382:347348.CrossRefGoogle Scholar
Nopcsa, F. 1908. Zur Kenntnis der fossilen Eidechsen. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 21:3362.Google Scholar
Nopcsa, F., 1923. Eidolosaurus und Pachyophis. Zwei neue Neocom-Reptilien. Palaeontographica, 65:99154.Google Scholar
Oppel, M. 1811. Die Ordnungen, Familien, und Gattungen de Reptilien. Munich [not seen].Google Scholar
Polcyn, M. J., Tchernov, E., and Jacobs, L. L. The Cretaceous biogeography of the Eastern Mediterranean with a description of a new basal mosasauroid from Ein Yabrud, Israel, pp. 259290. In Tomida, Y., Rich, T. H., and Vickers-Rich, P. (eds.), Proceedings of the Second Gondwanan Dinosaur Symposium, National Science Monograph, No. 15, Tokyo.Google Scholar
Rage, J.-C. 1984. Serpentes. Handbuch der Paläoherpetologie, Teil 11. Gustav Fischer Verlag, Stuttgart.Google Scholar
Rieppel, O. 1988. A review of the origin of snakes. Evolutionary Biology, 22:37130.CrossRefGoogle Scholar
Russell, D. A. 1967. Systematics and morphology of American mosasaurs (Reptilia, Sauria). Bulletin of the Peabody Museum of Natural History, 23:1237.Google Scholar
Scanlon, J. D. 1996. Studies in the Palaeontology and Systematics of Australian Snakes. Ph.D thesis, University of New South Wales.Google Scholar
Scanlon, J. D., and Lee, M. S. Y. 2000. The Pleistocene serpent-Wonambi and the early evolution of snakes. Nature, 403:416420.CrossRefGoogle ScholarPubMed
Scanlon, J. D., and Lee, M. S. Y. In press. On varanoid-like teeth in primitive snakes and snake-like teeth in marine varanoids. Journal of Herpetology.Google Scholar
Scanlon, J. D., Lee, M. S. Y., Caldwell, M. W., and Shine, R. 1999. The palaeoecology of the primitive snake Pachyrhachis, Historical Biology, 13:127152.CrossRefGoogle Scholar
Schumacher, B. A. 1996. Mosasaur caudal anatomy. Abstracts 56th Annual Meeting Society of Vertebrate Paleontology, Journal of Vertebrate Paleontology, 16 (supplement to Number 3):63A.Google Scholar
Seeley, H. G. 1881. On remains of a small lizard from the Neocomian rocks of Comén, near Trieste, preserved in the Geological Musem of the University of Vienna. Quarterly Journal of the Geological Society of London, 37:5256.CrossRefGoogle Scholar
Sorenson, M. 1999. TreeRot Version 2. Computer program and documentation. Distributed by the author, Boston University.Google Scholar
Sprackland, R. G. 1991. The origin and zoogeography of monitor lizards of the subgenus Odatria gray (Sauria: Varanidae): A re-evaluation. Mertensiella, 2:240252.Google Scholar
Swofford, D. L. 1999. PAUP* Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland MA.Google Scholar
Taylor, E. H. 1951. Concerning Oligocene amphisbaenid reptiles. University of Kansas Science Bulletin, 34:521578.Google Scholar
Underwood, G. L. 1970. The Eye; Pp. 197. In Gans, C. and Parsons, T. S. (eds.), The Biology of the Reptilia, Volume 2. Academic Press: London.Google Scholar
Wall, W. P. 1983. The correlation between high limb bone density and aquatic habits in recent mammals. Journal of Paleontology, 57:197207.Google Scholar
Walls, G. L. 1940. Ophthalmological implications for the early history of snakes. Copeia, 1940:18.CrossRefGoogle Scholar
Webb, P. W. 1982. Locomotor patterns in the evolution of actinopterygian fishes. American Zoologist, 22:329342.CrossRefGoogle Scholar
Wu, X.-C., Brinkman, D. B., and Russell, A. P. 1996. Sineoamphisbaena hexatabularis, an amphisbaenian (Diapsida: Squamata) from the Upper Cretaceous redbeds at Bayan Mandahu (Inner Mongolia, People's Republic of China), and comments on the phylogenetic relationships of the Amphisbaenia. Canadian Journal of Earth Sciences, 33:541577.CrossRefGoogle Scholar
Zaher, H. 1998. The phylogenetic position of Pachyrhachis within snakes (Squamata, Serpentes). Journal of Vertebrate Paleontology, 18:13.CrossRefGoogle Scholar
Zaher, H. and Rieppel, O. 1999a. Tooth implantation and replacement in squamates, with special reference to mosasaur lizards and snakes. American Museum Novitates, 3271:119.Google Scholar
Zaher, H., and Rieppel, O. 1999b. The phylogenetic relationships of Pachyrhachis problematicus, and the evolution of limblessness in snakes (Lepidosauria, Squamata). Comptes rendus de l'academie des sciences, Sciences de la terre et des planètes, 329:831837.Google Scholar