Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T12:28:58.628Z Has data issue: false hasContentIssue false

Abyssal benthic foraminifera in the eastern equatorial Pacific (IODP EXP 320) during the middle Eocene

Published online by Cambridge University Press:  14 July 2015

Hiroyuki Takata
Affiliation:
Marine Research Institute, Pusan National University, San 30 Jangjeon-dong, Busan 609–735, Korea, Research Center for Coastal Lagoon Environments, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan,
Ritsuo Nomura
Affiliation:
Faculty of Education, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan, ;
Akira Tsujimoto
Affiliation:
Faculty of Education, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan, ;
Boo-Keun Khim
Affiliation:
Department of Oceanography, Pusan National University, San 30 Jangjeon-dong, Busan 609–735, Korea, ;
Ik Kyo Chung
Affiliation:
Department of Oceanography, Pusan National University, San 30 Jangjeon-dong, Busan 609–735, Korea, ;

Abstract

We report on the faunal transition of benthic foraminifera during the middle Eocene at Site U1333 (4862 m water depth, 3,560–3,720 m paleo-water depth) of Integrated Ocean Drilling Program Expedition 320 in the eastern equatorial Pacific Ocean. During the period ∼41.5–40.7 Ma, which includes carbonate accumulation event 3 (CAE-3), the benthic foraminiferal accumulation rate (BFAR) increased gradually and then it declined rapidly. In contrast, BFAR was considerably lower during ∼40.7–39.4 Ma, corresponding to the middle Eocene climatic optimum (MECO), and then it increased during ∼39.3–38.4 Ma, including CAE-4. Diversity (E [S200]) was slightly lower in the upper part of the study interval than in the lower part. The most common benthic foraminifera were Nuttallides truempyi, Oridorsalis umbonatus, and Gyroidinoides spp. in association with Globocassidulina globosa and Cibicidoides grimsdalei during the period studied. Quadrimorphina profunda occurred abundantly with N. truempyi, O. umbonatus, and G. globosa during ∼39.4–38.4 Ma, including CAE-4, although this species was also relatively common in the lower part of the study interval. Virgulinopsis navarroanus and Fursenkoina sp. A, morphologically infaunal taxa, were common during ∼38.8–38.4 Ma, corresponding to the late stage of CAE-4. Based on Q-mode cluster analysis, four sample clusters were recognized and their stratigraphic distributions were generally discriminated in the lower and upper parts of the study interval. Thus, there was only a small faunal transition in the abyssal eastern equatorial Pacific during the middle to late-middle Eocene. The faunal transition recognized in this study may be related to recovery processes following intense carbonate corrosiveness in the eastern equatorial Pacific during MECO.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alth, A. 1850. Geognostisch-paläontologische Beschreibung der nächsten Umgebung von Lemberg. Naturwissenschaftliche Abhandlungen, 3:171284.Google Scholar
Bandy, O. L. 1949. Eocene and Oligocene foraminifera from Little Stave Creek, Clarke Country, Alabama. Bulletins of American Paleontology, 32:5206.Google Scholar
Beckmann, J. P. 1954. Die Foraminiferen der Oceanic Formation (Eocaen–Oligocaen) von Barbados, Kl. Antillen. Eclogae Geologicae Helvetiae, 46:301412.Google Scholar
Bermúdez, P. J. 1937. Nuevas especies de foraminíferos del Eoceno de las cercanías de Guanajay, Provincia Pinar del Rio, Cuba. Memorias de la Societad Cubana de Historia Naturan “Felipe Poey,” 11:237247.Google Scholar
Berggren, W. A. and Pearson, P. N. 2005. A revised tropical to subtropical Paleogene planktonic foraminiferal zonation. Journal of Foraminiferal Research, 35:279298.CrossRefGoogle Scholar
Berry, W. and Kelly, L. 1929. The foraminifera of the Ripley formation on Coon Creek, Tennessee. Proceedings of the United States National Museum, 76:120.CrossRefGoogle Scholar
Blow, W. H. 1979. The Cainozoic Globigerinida, 3 vols. E. J. Brill, Leiden, 1452p.CrossRefGoogle Scholar
Bohaty, S. M. and Zachos, J. C. 2003 . Significant southern ocean warming event in the late middle Eocene. Geology, 31:10171020.CrossRefGoogle Scholar
Boltovskoy, E. and Boltovskoy, D. 1989. Paleocene–Pleistocene benthic foraminiferal evidence of major paleoceanographic events in the eastern South Atlantic (DSDP Site 525. Walvis Ridge). Maine Micropaleontology, 14:283316.CrossRefGoogle Scholar
Boltovskoy, E. and Watanabe, S. 1994. Biostratigraphy of Tertiary and Quaternary benthic batyal foraminifers of DSDP Site 317. Maine Micropaleontology, 23:101120.CrossRefGoogle Scholar
Boltovskoy, E., Watanabe, S., Totah, V. I., and Ocampo, J. Vera. 1992. Cenozoic benthic bathyal foraminifers of DSDP Site 548 (north Atlantic). Micropaleontology, 38:183207.CrossRefGoogle Scholar
Brady, H. B. 1884 . Report on the foraminifera dredged by HMS Challenger, during the years 1873–1876. InMurray, J.(ed.), Report on the Scientific Results of the Voyage of the H. M. S. Challenger during the years 1873–1876. Zoology 9, 814p.Google Scholar
Brotzen, F. 1940. Flintrännans och Trindelrännas geologi (Öresund). Sveriges Geologiska Undersökning, ser. C No. 435, 34:333.Google Scholar
Brotzen, F. 1948. The Swedish Paleocene and its foraminiferal fauna. Sveriges Geologiska Undersökning, ser. C No. 493, 42:1140.Google Scholar
Cande, S. C. and Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100:60936095.CrossRefGoogle Scholar
Cushman, J. A. 1911. A monograph of the foraminifera of the North Pacific Ocean; Part 2, Textulariidae. Bulletin of the United States National Museum, 71:1108.Google Scholar
Cushman, J. A. 1917. New species and varieties of foraminifera from the Philippines and adjacent waters. Proceedings of the United States National Museum, 51:651662.CrossRefGoogle Scholar
Cushman, J. A. 1921. Foraminifera of the Philippine Archipelago and adjacent seas—contributions to the biology of the Philippine Archipelago and adjacent regions. United States National Museum Bulletin, 100:608p.Google Scholar
Cushman, J. A. 1926. The foraminifera of the Velasco Shale of the Tampico Embayment. Bulletin of the American Association of Petroleum Geologists, 10:581612.Google Scholar
Cushman, J. A. 1927 a. New and interesting foraminifera from Mexico and Texas. Contributions from the Cushman Laboratory for Foraminiferal Research, 3:111119.Google Scholar
Cushman, J. A. 1927 b. Some characteristic Mexican fossil foraminifera. Journal of Paleontology, 1:147172.Google Scholar
Cushman, J. A. 1933 a. New American Cretaceous foraminifera. Contributions from the Cushman Laboratory for Foraminiferal Research, 9:4964.Google Scholar
Cushman, J. A. 1933 b. Some new Recent foraminifera from the tropical Pacific. Contributions from the Cushman Laboratory for Foraminiferal Research, 9:7795.Google Scholar
Cushman, J. A. 1934. Smaller foraminifera from Vitilevu, Fiji. In H. S. Ladd, Geology of Vitilevu, Fiji, Bulletin of the Bernice P. Bishop Museum, 119:102140.Google Scholar
Cushman, J. A. 1936. Cretaceous foraminifera of the family Chilostomellidae. Contributions from the Cushman Laboratory for Foraminiferal Research, 12:7178.Google Scholar
Cushman, J. A. 1940. Midway foraminifera from Alabama. Contributions from the Cushman Laboratory for Foraminiferal Research, 16:5173.Google Scholar
Cushman, J. A. 1946. Upper Cretaceous Foraminifera of the Gulf Coastal Region of the United States and Adjacent Areas. U. S. Geological Survey Professional Paper 206, 241p.CrossRefGoogle Scholar
Cushman, J. A. 1946. A rich foraminiferal fauna from the Cocoa Sand of Alabama. Special Publications Cushman Laboratory for Foraminiferal Research, 16:140.Google Scholar
Cushman, J. A. 1947. Some new foraminifera from the Paleocene of the southern United States. Contributions from the Cushman Laboratory for Foraminiferal Research, 23:8185.Google Scholar
Cushman, J. A. 1951. Paleocene Foraminifera of the Gulf Coastal Region of the United States and Adjacent Areas. U. S. Geological Survey Professional Paper 232, 75p.CrossRefGoogle Scholar
Cushman, J. A. and Bermúdez, P. J. 1937. Further new species of Foraminifera from the Eocene of Cuba. Contributions from the Cushman Laboratory for Foraminiferal Research, 13:129.Google Scholar
Cushman, J. A. and Deaderick, F. L. 1944. Cretaceous foraminifera from Marlbrook Marl of Arkansas. Journal of Paleontology, 18:328342.Google Scholar
Cushman, J. A. and Jarvis, P. W. 1934. Some interesting new uniserial foraminifera from Trinidad. Contributions from the Cushman Laboratory for Foraminiferal Research, 10:7175.Google Scholar
Cushman, J. A. and Parker, F. L. 1936. Some American Eocene Buliminas. Contributions from the Cushman Laboratory for Foraminiferal Research, 12:3945.Google Scholar
Cushman, J. A. and Renz, H. H. 1948. Eocene foraminifera of the Navet and Hospital Hill formations of Trinidad. Contributions from the Cushman Laboratory for Foraminiferal Research, Special Publication, 24:142.Google Scholar
Cushman, J. A. and Stainforth, R. M. 1945. The foraminifera of the Cipero Marl Formation of Trinidad, British West Indies. Special Publications Cushman Laboratory for Foraminiferal Research, 14:174.Google Scholar
Davis, J. C. 1973. Statistics and Data Analysis in Geology. John Wiley and Sons, New York, 550p.Google Scholar
D'haenens, S., Bornemann, A., Stassen, P., and Speojer, R. P. 2012. Multiple early Eocene benthic foraminiferal assemblage and δ13C fluctuations at DSDP Site 401 (Bay of Biscay–NE Atlantic). Marine Micropaleontology, 88–89:1535.Google Scholar
Eberwein, A. and Mackensen, A. 2006. Regional primary productivity differences off Morocco (NW-Africa) recorded by modern benthic foraminifera and their stable carbon isotopic composition. Deep-Sea Research I, 53:13791405.CrossRefGoogle Scholar
Edgar, K. M., Wilson, P. A., Sexton, P. F., and Suganuma, Y. 2007. No extreme bipolar glaciation during the main Eocene calcite compensation shift. Nature, 448:908911.CrossRefGoogle ScholarPubMed
Feyling-Hanssen, R. W. 1954. Late-Pleistocene foraminifera from the Oslofjord area, southeast Norway. Norsk Geologisk Tidsskrift, 33:109152.Google Scholar
Gooday, A. J. 1994. The biology of deep-sea foraminifera: a review of some advances and their applications in paleoceanography. Palaios, 9:1431.CrossRefGoogle Scholar
Gooday, A. J. 2003. Benthic foraminifera (Protista) as tools in deep-water paleoceanography: a review of environmental influences on faunal characteristics. Advances in Marine Biology, 46:190.CrossRefGoogle Scholar
Gooday, A. J., Nomaki, H., and Kitazato, H. 2008. Modern deep-sea benthic foraminifera: a brief review of their morphology-based biodiversity and trophic diversity, p. 97119. InAustin, W. E. N. and James, R. H.(eds.), Biogeochemical Controls on Palaeoceanographic Environmental Proxies. Geological Society Special Publication 303.Google Scholar
Grzybowski, J. 1898. Otwornice pokładów naftonośnych okolicy Krosna. Rozpraway, Academia Umiejętności w Krakowie, Wydzial Marematyczno-Przyrodniczy, Kraków, ser. 2, 13:257305.Google Scholar
Gümbel, C. W. Von. 1868. Beiträge zur Foraminiferenfauna der nord-alpine Eocängebilde. Königlich-Bayerische Academie der Wissenschften, Mathematisch-Physikalische Klasse, Abhandlungen, München, (1870), 10:581730.Google Scholar
Hagenow, F. von. 1842 . Monographie der Rügen'schen Kreide-Versteinerungen; Abt. III-Mollusken. Neus Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, 1842:528575.Google Scholar
Hantken, M. von. 1875. Die Fauna der Clavulina szabói-Schichten; Theil I–Foraminiferen. Königlich-Ungarische Geologische Anstalt, Mitteilungen Jahrbunch, 4:193.Google Scholar
Hasegawa, S. 1988. Distribution of Recent foraminiferal fauna in Toyama Bay, Central Japan. Revue de Paleobiologie, spec. vol., 2:803813.Google Scholar
Hayward, B. W. 2002. Late Pliocene to middle Pleistocene extinctions of deep-sea benthic foraminifera (“Stilostomella extinction”) in the southwest Pacific. Journal of Foraminiferal Research, 32:274307.CrossRefGoogle Scholar
Hayward, B. W., Johnson, K., Sabaa, A. T., Kawagata, S., and Thomas, E. 2010. Cenozoic record of elongate, cylindrical, deep-sea benthic foraminifera in the North Atlantic and equatorial Pacific Oceans. Marine Micropaleontology, 74:7595.CrossRefGoogle Scholar
Hayward, B. W., Kawagata, S., Sabaa, A., Grenfell, H., Van Kerkhoven, L., Johnson, K., and Thomas, E. 2012. The last global extinction (mid-Pleistocene) of deep-sea benthic foraminifera (Chrysalogoniidae, Ellipsoidinidae, Glandulonodosariidae, Plectofrondiculariidae, Pleurostomellidae, Stilostomellidae), their late Cretaceous–Cenozoic history and taxonomy. Cushman Foundation for Foraminiferal Research Special Publication 43, 408p.Google Scholar
Herguera, J. C. and Berger, W. 1991 . Paleoproductivity from benthonic foraminifera abundance glacial to postglacial change in the west-equatorial Pacific. Geology, 19:11731176.2.3.CO;2>CrossRefGoogle Scholar
Heron-Allen, E. and Earland, A. 1910 . On the Recent and fossil foraminifera of the shore-sands of Selsey Bill, Sussex; Part V–The Cretaceous foraminifera. Journal of the Royal Microscopical Society, 1910:401426.CrossRefGoogle Scholar
Horn, H. 1966. Measurement of “overlap” in comparative ecological studies. American Naturalist, 100:419424.CrossRefGoogle Scholar
Howe, H. V. 1939. Louisiana Cook Mountain Eocene foraminifera. Bulletin of the Geological Survey of Louisiana, 14:1122.Google Scholar
Jones, R.W. 1994. The Challenger Foraminifera. Oxford University Press, Oxford, 149p.Google Scholar
Jorissen, F. J., Fontanier, C., and Thomas, E. 2007. Paleoceanographic proxies based on deep-sea benthic foraminiferal assemblage characteristics, p. 263326. InHillaire-Marcel, C. and de Vernal, A.(eds.), Proxies in Late Cenozoic Paleoceanography 1. Elsevier.CrossRefGoogle Scholar
Loeblich, A.R. Jr. and Tappan, H. 1955. A revision of some Glanduline Nodosariidae (foraminifera). Smithsonian Miscellaneous Collections, 126: 19Google Scholar
Loeblich, A.R. Jr. and Tappan, H. 1987. Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, 970 p. and 847 plates.Google Scholar
Katz, M. E. and Miller, K. G. 1996. Eocene to Miocene oceanographic and provenance changes in a sequence stratigraphic framework: benthic foraminifers of the New Jersey Margin, p. 6595. InMountain, G. S., Miller, K. G., Blum, P., Poag, C. W. and Twichell, D. C.(eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 150. College Station, TX(Ocean Drilling Program).Google Scholar
Katz, M. E., Tjalsma, R. C., and Miller, K. G. 2003. Oligocene bathyal to abyssal foraminifera of the Atlantic Ocean. Micropaleontology, (supplement 2) 49:145.CrossRefGoogle Scholar
Lyle, M., Lyle, O. A., Backman, J., and Tripati, A., 2005. Biogenic sedimentation in the Eocene equatorial Pacific—the stuttering greenhouse and Eocene carbonate compensation depth, p. 135. InWilson, P. A., Lyle, M. and Firth, J. V., (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 199. College Station, TX(Ocean Drilling Program).Google Scholar
Lyle, M. W., Wilson, P. A., Janecek, T. R., et al. 2002. Proceeding of the Ocean Drilling Program, Initial Reports, 199 [CD-ROM]. Available from Ocean Drilling Program,Texas A&M University, College Station TX, 77845-9547, U.S.A.CrossRefGoogle Scholar
Marsson, Th. 1878. Die Foraminiferen der Weissen Schreibkreide der Inseln Rügen, Mitteilungen des Naturwissenschaftlichen Vereins für Neu-Vorpommern und Rugen in Greifswald, 10:115196.Google Scholar
Matsunaga, T. 1955. Spirosigmoillinella, a new foraminiferal genus from the Miocene of Japan. Transactions and Proceedings of the Paleontological Society of Japan (N.S.), 18:4950.Google Scholar
Miao, Q. and Thunnel, R. C. 1993. Recent deep-sea benthic foraminiferal distribution in the South China and Sulu Seas. Marine Micropaleontology, 22:132.CrossRefGoogle Scholar
Miller, K. G. 1983. Eocene–Oligocene paleoceanography of the deep bay of Biscay: benthic foraminiferal evidence. Marine Micropaleontology, 7: 403440.CrossRefGoogle Scholar
Miller, K. G., Curry, W. B., and Ostermann, D. R. 1985. Late Paleocene (Eocene to Oligocene) benthic foraminiferal oceanography of the Goban Spur region, Deep Sea Drilling Project Leg 80, p. 505538. Inde Graciansky, P. C., Poag, C. W.et al. (eds.), Initial Reports of the Deep Sea Drilling Project, 80.Google Scholar
Miller, K. G., Katz, M. E., and Berggren, W. A. 1992 . Cenozoic deep-sea benthic foraminifera: a tale of three turnover, p. 6775. InTakayanagi, Y. and Saito, T.(eds.), Studies in Benthic Foraminifera: Proceedings of the Fourth International Symposium on Benthic Foraminifera, Sendai, 1990 (Benthos '90), Tokai University Press.Google Scholar
Müller-Merz, E. and Oberhänsli, H. 1991. Eocene bathyal and abyssal benthic foraminifera from a South Atlantic transect at 20–30°S. Palaeoceanography, Paleoclimatology, Palaeoecology, 83:117171.CrossRefGoogle Scholar
Neugeboren, J. L. 1856. Die Foraminiferen aus der Ordnung der Stichostegier von Ober-Lapugy in Siebenbürgen. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 12:65108.Google Scholar
Nomura, R. 1995. Paleogene to Neogene deep-sea paleoceanography in the eastern Indian Ocean: benthic foraminifera from ODP Sites 747, 757 and 758. Micropaleontology, 41:251290.CrossRefGoogle Scholar
Nomura, R. 1999. Miocene cassidulinids foraminifera from Japan. Paleontological Society of Japan, Special Papers, 38:169.Google Scholar
Nomura, R., Seto, K., Nishi, H., Takemura, K., Iwai, M., Motoyama, I., and Maruyama, T. 1997. Cenozoic paleoceanography in the Indian Ocean: paleoceanographic biotic and abiotic changes before the development of monsoon system. Journal of Geological Society of Japan 103:280303. (In Japanese)Google Scholar
Nomura, R. and Takata, H. 2005 . Data report: Paleocene/Eocene benthic foraminifers, ODP Leg 199 Sites 1215, 1220, and 1221, equatorial central Pacific Ocean, p. 134. InWilson, P. A., Lyle, M. and Firth, J. V.(eds.), Proceeding of Ocean Drilling Program, Scientific Results, 199. College Station, TX(Ocean Drilling Program).Google Scholar
Nuttal, N. L. F. 1930. Eocene foraminifera from Mexico. Journal of Paleontology, 4:2325.Google Scholar
Oksanen, J., Blamchert, G. B., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymons, P., Stevens, M. H. H., and Wagner, H. 2010. Vegan: community ecology package. R package version v. 1 . 17. 4 [http://cran.r-project.org/web/packages/vegan/index.html].Google Scholar
Orbigny, A. d'. 1826. Tableau méthodique de la classe des Céphalopodes. Annales Sciences Naturelles, 7:245314.Google Scholar
Orbigny, A. d'. 1839. Voyage dans l'Améque méridiomale. Foraminiferes, 5, part 5, p. 186, In P. Bertrand, Paris and Strasbourg.Google Scholar
Orbigny, A. d'. 1840. Mémoire sur les foraminifères de la craie blanche du bassin de Paris. Mémoires de la Société Géologique de France, 4:151.Google Scholar
Orbigny, A. d'. 1846. Foraminifères fossils du Bassin Tertiaire de Vienne (Autriche), Paris. Gide et Comp., Paris, 303p.CrossRefGoogle Scholar
Ortiz, S. and Thomas, E. 2006. Lower–middle Eocene benthic foraminifera from the Fortuna Section (Betic Cordillera, southeastern Spain). Micropaleontology, 52:97150.CrossRefGoogle Scholar
Parker, W. K., Jones, T. R., and Brady, H. B. 1871 . On the nomenclature of the foraminifera: Part XIV—The species numerated by d'Orbigny in the “Annales des Sciences Naturelles”, 1826, vol. 7 (continued from Ann. Nat. Hist., ser. 3, col. XVI, p. 41). Annals and Magazine of Natural History, London, ser. 4, 8:145179, 238–266.CrossRefGoogle Scholar
Pälike, H., Lyle, M., Nishi, H., Raffi, I, Gamage, K., Klaus, A., and the Expedition 320/321 Scientists. 2010. Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.320321.2010.CrossRefGoogle Scholar
Pälike, H., Lyle, M. W., Nishi, H., Raffi, I., Ridgwell, A., Gamage, K., Klaus, A., Acton, G., Anderson, L., Backman, J., Baldauf, J., Beltran, C., Bohaty, S. M., Bown, P., Busch, W., Channell, J. E. T., Chun, C. O. J., Delaney, M., Dewangan, P., Dunkley Jones, T., Edgar, K. M., Evans, H., Fitch, P., Foster, G. L., Gussone, N., Hasegawa, H., Hathorne, E. C., Hayashi, H., Herrle, J. O., Holbourn, A., Hovan, S., Hyeong, K., Iijima, K., Ito, T., Kamikuri, S., Kimoto, K., Kuroda, J., Leon-Rodriguez, L., Malinverno, A., Moore, T. C. Jr, Murphy, B. H., Murphy, D. P., Nakamura, H., Ogane, K., Ohneiser, C., Richter, C., Robinson, R., Rohling, E. J., Romero, O., Sawada, K., Scher, H., Schneider, L., Sluijs, A., Takata, H., Tian, J., Tsujimoto, A., Wade, B. S., Westerhold, T., Wilkens, R., Williams, T., Wilson, P. A., Yamamoto, Y., Yamamoto, S., Yamazaki, T., and Zeebe, R. E.In Press. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature, 488:609614.CrossRefGoogle Scholar
Pälike, H., Norris, R. D., Herrle, J. O., Wilson, P. A., Coxall, H. K., Lear, C. H., Shackleton, N. J., Tripati, A. K., and Wade, B. 2006 . The heartbeat of the Oligocene climatic system. Science, 314:18941989.CrossRefGoogle Scholar
Plummer, H. J. 1927 . Foraminifera of the Midway Formation in Texas. Bulletin University of Texas Bureau of Economic Geology and Technology, 2644:1206.Google Scholar
R Development Core Team. 2010. R: a language and environments for statistical computing. R Foundation for Statistical Computing, Vienna, Austria [http://www.R-project.org].Google Scholar
Reuss, A. E. 1844. Geognostische Skizzen aus Böhmen. II, C. W. Medau, Prague.Google Scholar
Reuss, A. E. 1845. Die Versteinerungen der böhmischen Kreideformation, Erste Abtheilung. E. Schweizerbart'sche Berlagsbuchhandlung und Druckerei.Google Scholar
Reuss, A. E. 1851. Ueber die fossilen Foraminiferen und Entomostraceen der Septarienthone der Umgegend von Berlin. Zeitschrift der Deutschen Geologischen Gesellschaft, Berlin, 3:4991.Google Scholar
Reuss, A. E. 1851. Die Foraminiferen und Entomostraceen des Kreidemergels von Lemberg. Naturwissenschaftliche Abhandlungen, Wien, 4:1752.Google Scholar
Reuss, A. E. 1874 . Die Foraminiferen, Brtozoen und Ostracoden des Pläners, p. 73–127. In H. B. Geinitz, Das Elbthalgebirge in Sachsen; Der mittlere und obere Quader, IV, Palaeontographica (1872–1875), 20:73127.Google Scholar
Schnitker, D. and Tjalsma, L. R. C. 1980. New genera and species of benthic foraminifers from Paleocene and Eocene deep-water deposits. Journal of Foraminiferal Research, 10:235241.CrossRefGoogle Scholar
Schwager, C. 1866. Fossile Foraminiferen von Kar Nicobar: Novara Expeditions, Geologischer Theil, 2:187268.Google Scholar
Suhr, S. B. and Pond, D. W. 2006. Antarctic benthic foraminifera facilitate rapid cycling of phytoplankton-derived organic carbon. Deep-Sea Research II, 53:895902.CrossRefGoogle Scholar
Suhr, S. B., Pond, D. W., Gooday, A. J., and Smith, C. R. 2003. Selective feeding by foraminifera on phytodetritus on the western Antarctic Peninsula shelf: evidence from fatty acid biomarker analysis. Marine Ecology Progress Series, 262:153162.CrossRefGoogle Scholar
Takata, H., Nomura, R., and Khim, B.-K. 2010. Response of abyssal benthic foraminifera to mid-Oligocene glacial events in the eastern Equatorial Pacific Ocean (ODP Leg 199). Palaeogeography, Palaeoclimatology, Palaeoecology, 198:1137.Google Scholar
Takata, H., Nomura, R., Tsujimoto, A., and Khim, B.-K. 2012. Late early Oligocene deep-sea benthic foraminifera and their faunal response to paleoceanographic changes in the eastern Equatorial Pacific. Marine Micropaleontology, 96–97:127132.CrossRefGoogle Scholar
Takeda, K. and Kaiho, K. 2007. Faunal turnovers in central Pacific benthic foraminifera during the Paleocene–Eocene thermal maximum. Palaeogeography, Palaeoclimatology, Palaeoecology, 251:175197.CrossRefGoogle Scholar
Thomas, E. 1985. Late Eocene to recent deep-sea benthic foraminifers from the central Equatorial Pacific Ocean, p. 655694. InMayer, L., Theyer, F., et al. (eds.), Initial Reports of the Deep Sea Drilling Project 85.CrossRefGoogle Scholar
Thomas, E. 1992. Cenozoic deep-sea circulation: evidence from deep-sea benthic foraminifera. Antarctic Research Series (The Antarctic paleoenvironment: A perspective on global changes), 56:141165.Google Scholar
Thomas, E. 2007. Cenozoic mass extinctions in the deep sea: what perturbs the largest habitat on Earth? The Geological Society of America Special Paper 424, p. 123.Google Scholar
Thomas, E. and Gooday, A. J., 1996. Cenozoic deep-sea benthic foraminifers: tracers for changes in oceanic productivity? Geology, 24:355358.2.3.CO;2>CrossRefGoogle Scholar
Thunell, R. C. 1976. Optimum indices of calcium carbonate dissolution in deep-sea sediments. Geology, 4:525528.2.0.CO;2>CrossRefGoogle Scholar
Tjalsma, R. C. 1983. Eocene to Miocene benthic foraminifers from Deep Sea Drilling Project Site 516, Rio Grande Rise, south Atlantic, p. 731755. InBaekr, P. F., Carlson, R. L., Johnson, D. A.et al. (eds.), Initial Reports of the Deep Sea Drilling Project 72.CrossRefGoogle Scholar
Tjalsma, R. C. and Lohmann, G. P. 1983. Paleocene–Eocene Bathyal and Abyssal Benthic Foraminifera from the Atlantic Ocean. Micropaleontology Special Publications Series, 4:176.Google Scholar
Trauth, F. 1918. Das Eozänvorkommen bei Radstadt im Pongau und seine Beziehungen zu den gleichalterigen Ablagerungen bei Kirchberg am Wechsel und Wimpassing am Leithagebige. Denkschriften der Kaiserlichen Akademie der Wissenschaften Wien, Mathematisch-Naurwissenschaftliche Classe, 95:171278.Google Scholar
Tripati, A., Backman, J., Elderfield, H., and Ferretti, P. 2005. Eocene bipolar glaciation associated with global carbon cycle changes. Nature, 436:341346.CrossRefGoogle ScholarPubMed
Van Andel, T. H., Heath, G. R., and Moore, T. C. Jr. 1975. Cenozoic history and paleoceanography of the central equatorial Pacific Ocean: a regional synthesis of Deep Sea Drilling Project data. Memoir, Geological Society of America 143:1134.CrossRefGoogle Scholar
Van Morkhoven, F. P. C. M., Berggren, W. A., and Edwards, A. S. 1986. Cenozoic Cosmopolitan Deep-Water Benthic Foraminifera. Bulletin des Centres de Recherches Exploration—Production Elf-Aquitaine, 11. 421p.Google Scholar
Westerhold, T., Röhl, U., Wilkens, R., Pälike, H., Lyle, M., Dunkley Jones, T., Bown, P., Moore, T., Kamikuri, S., Acton, G., Ohneiser, C., Yamamoto, Y., Richter, C., Fitch, P., Scher, H., and Liebrands, D., Expeditions 320/321 Scientists. 2012. Revised composite depth scales and integration of IODP Sites U1331–U1334 and ODP Sites 1218–1220. InH. Pälike, M. Lyle, H. Nishi, I. Raffi, K. Gamage, A. Klaus, and the Expedition 320/321 Scientists, Proc. IODP, 320/321: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).doi:10.2204/iodp.proc.320321.201.2012.CrossRefGoogle Scholar
White, M. P. 1928. Some index foraminifera of the Tampio Embayment area of Mexico. Journal of Paleontology, 2:177215.Google Scholar
Supplementary material: File

Takata et al. supplementary material

Takata et al. supplementary material

Download Takata et al. supplementary material(File)
File 88.1 KB