Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T03:37:16.222Z Has data issue: false hasContentIssue false

Walking trails of the giant terrestrial arthropod Arthropleura from the Upper Carboniferous of Kentucky

Published online by Cambridge University Press:  20 May 2016

Ronald L. Martino
Affiliation:
Department of Geology, Marshall University, Huntington, WV 25755-2550,
Stephen F. Greb
Affiliation:
Kentucky Geological Survey, University of Kentucky, Lexington 40506-0107,

Extract

Arthropleurids were terrestrial, millipede-like arthropods, The genus Arthropleura Jordan from the Upper Carboniferous reached an enormous size of 2 m or more in length (Hahn et al., 1986), Occurrences are rare and the chronologie and paleogeographic distribution of Arthropleura coincides with the tropical Euramerican floral belt of the Carboniferous (Rolfe, 1969), The Carboniferous was a time of high atmospheric O2 levels (35%) compared to the current 21%, which may have favored the development of large terrestrial arthropods of this time (Dudley, 1998; Graham et al., 1997; Berner, 2001) . Body fossils of Arthropleura range from the Visean to Early Permian (Rolfe, 1969; Schneider and Barthel, 1997), while trackways have been reported from the Visean (Pearson, 1992) to Stephanian (Langiaux and Sotty, 1977; Castro, 1997; Fig. 1). Arthropleura fragments have been described from Ohio, Pennsylvania, Illinois, and Nova Scotia. Only four Arthropleura trackway sites have been described from North America (New Mexico, Kansas, Nova Scotia, and New Brunswick). Trackways provide information about size and locomotion that is not discernable from fragmentary body fossils .

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, H. and Engel, H. 1984. Ein neuer Fund von Arthropleura armata Jordan & Meyer im Saarkarbon: Mainzer Geowissenschaftliche Mitteilungen, 13:285297.Google Scholar
Berner, R. A. 2001. Modeling atmospheric 02 over Phanerozoic time: Geochimica et Cosmochimica, Acta, 65:685694.Google Scholar
Braddy, S. J. 2001. Trackways—Arthropod Locomotion., p. 389393. In Briggs, D. E. G. and Crowther, P. R. (eds.), Paleobiology II, Blackwell Science, London.CrossRefGoogle Scholar
Briggs, D. E. G. and Almond, J. E. 1994. The arthropleurids from the Stephanian (late Carboniferous) of Monteau-les-mines (Massif Central–France). In Poplin, C. and Heyler, D. (eds.), Quand le Massif Central Etait Sous L'equateur: In Ecosysteme Carbonifere a Monteau-les-Mines. Editions du Comite des Travaux Historiques et Scientifiques, Memoire de la Section Sciences, 12:127135.Google Scholar
Briggs, D. E. G., Plint, A. G., and Pickerill, R. K. 1984. Arthropleura trails from the Westphalian of eastern Canada. Palaeontology, 27:843855.Google Scholar
Briggs, D. E. G., Rolfe, W. D. I., and Brannan, J. 1979. A giant myriapod trail from the Namurian of Arran Scotland. Palaeontology, 22:273291.Google Scholar
Carroll, R. L. 1988. Vertebrate Paleontology and Evolution. W. H. Freeman and Co., New York, 698 p.Google Scholar
Castro, M. P. 1997. Hallazgos de arthropleura en el Estefaniense de la peninsula iberica: Revista Espanola de Paleontologia, 12:1522.Google Scholar
Colbert, E. H. 1980. Evolution of the Vertebrates. John Wiley and Sons, Inc., New York, 510 p.Google Scholar
Clack, J. A. 2002. Gaining Ground—The Origin and Evolution of Tetrapods. Indiana University Press, 369 p.Google Scholar
Dawson, J. W. 1873. Impressions and footprints of aquatic animals and imitative markings, on Carboniferous rocks. American Journal of Science Series 3, 5:1624.CrossRefGoogle Scholar
Dimichele, W. A. and Hook, R. W. 1992. Palaeozoic terrestrial ecosystems., p. 206325. In Behrensmeyer, A. K., Damuth, J. D., Potts, W. A., Sues, H.-D., and Wing, S. L. (eds.), Terrestrial Ecosystems Through Time: Chicago, Illinois, University of Chicago Press.Google Scholar
Dudley, R. 1998. Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. Journal of Experimental Biology, 210:10431050.CrossRefGoogle Scholar
Easterday, C. R. 2001. Fossil terrestrial arthropods of the “7–11 Mine” (Desmoinesian–Missourian, Pennsylvanian, Carboniferous), Columbiana County, eastern Ohio. Geological Society of America Abstracts with Programs, 33:266.Google Scholar
Ferguson, L. 1966. The recovery of some large track-bearing slabs from Joggins, Nova Scotia. Maritime Sediments, 2:128130.Google Scholar
Ferguson, L. 1975. The Joggins section. Maritime Sediments, 11:6976.Google Scholar
Graham, J. B., Aguilar, N., Dudley, R., and Gans, C. 1997. The Late Paleozoic atmosphere and the ecological and evolutionary physiology of tetrapods., p. 141167. In Sumida, S. and Martin, K. L. M. (eds.), Amniote Origins: Completing the Transition to Land. San Diego, Academic Press.CrossRefGoogle Scholar
Greb, S. F., Dimichele, W. A., and Gastaldo, R. A. 2006. Evolution and importance of wetlands in earth history., p. 140. In Greb, S. F. and DiMichele, W. A. (eds.), Wetlands Through Time. Geological Society of America Special Paper 399.Google Scholar
Guthoerl, P. 1935. Entdeckung und Bergung des groessten, bis jetzt bekannten Exemplars von Arthropleura armata Jordan & V. Meyer in Grube Maybach-Saar: Zeitschrift der Deutschen Geologischen Gesellschaft, 87: 687692.Google Scholar
Guthoerl, P. 1936. Arthropleura, der Riesengliederfuessler des Oberkarbons, und seine Verbreitung in den europaeischen Steinkohlenbecken. Gleuckauf, Jg., 39:965976.Google Scholar
Hahn, G., Hahn, R. A., and Braukmann, C. 1986. Zur Kenntis von Arthropleura (Myriopoda; Ober Karbon). Geologica et Paleontologica 20: 125137.Google Scholar
Hannibal, J. T. 1997. Remains of Arthropleura, a gigantic myriapod arthropod, from the Pennsylvanian of Ohio and Pennsylvania. Kirtlandia, 50:19.Google Scholar
Heckel, P. H., Gibling, M. R., and King, N. R. 1998. Stratigraphic model for glacial-eustatic Pennsylvanian cyclothems in highstand nearshore detrital regimes. The Journal of Geology, 106:373383.CrossRefGoogle Scholar
Hunt, A. P., Lucas, S. G., Lerner, A., Hannibal, J. T. 2004. The giant Arthropleura trackway Diplichnites cuithensis from the Cutler Group (Upper Pennsylvanian) of New Mexico. Geological Society of America Abstracts with Programs, 36:66.Google Scholar
Joeckel, R. M. 1995. Paleosols below the Ames marine unit (Upper Pennsylvanian, Conemaugh Group) in the Appalachian basin, U. S. A.: variability on an ancient depositional landscape. Journal of Sedimentary Research, A65:393407.Google Scholar
Langiaux, J. and Sotty, D. 1977. Ichnologie; 4, Pistes et empreintes dans le Stephanien de Blanzy-Montceau: Societe d'Etudes des Sciences Naturelles et Historiques de Montceau-les-Mines, France, Revue Periodique de la Physiophile, 53:7492.Google Scholar
Lucas, S. G., Lerner, A. J., Hannibal, J. T., Hunt, A., and Schneider, J. W. 2005. Trackway of a giant Arthropleura from the Upper Pennsylvanian of El Cobre Canyon, New Mexico., p. 279282. In Geology of the Chana Basin. New Mexico Geological Society, 56th Field Conference Guidebook.Google Scholar
Mangano, M. B., Buatois, L. A., West, R. W., and Maples, C. G. 2002. Ichnology of a Pennsylvanian Equatorial Tidal Flat—The Stull Shale Member at Waverly, Eastern Kansas. Kansas Geological Survey, Bulletin 245, 133 p.Google Scholar
Manton, S. M. 1953. Locomotory habits and the evolution of the larger arthropod groups. Society of Experimental Biology, Symposia, 7:339376.Google Scholar
Manton, S. M. 1954. The evolution of arthropodan locomotory mechanisms. Pt. 4. The structure, habits and evolution of the Diplopoda. Journal of the Linnean Society (Zoology) 42:299368.Google Scholar
Marsh, O. C. 1894. Footprints of vertebrates in the coal measures of Kansas. American Journal of Science, 48:8184.CrossRefGoogle Scholar
Martino, R. L. 1991. Limnopus trackways from the Conemaugh Group (Late Pennsylvanian), southern West Virginia. Journal of Paleontology, 65:957972.CrossRefGoogle Scholar
Martino, R. L. 2004. Sequence stratigraphy of the Glenshaw Formation (Middle-Late Pennsylvanian) in the central Appalachian basin., p. 128. In Pashin, J. C. and Gastaldo, R. A. (eds.), Sequence Stratigraphy, Paleoclimate, and Tectonics of Coal-bearing Strata. American Association of Petroleum Geologists Studies in Geology 51.Google Scholar
Mccomas, G. A. and Mapes, R. H. 1988. Fauna associated with the Pennsylvanian floral zones of the 7–11 Mine, Columbiana County, northeastern Ohio. Ohio Journal of Science, 88:5355.Google Scholar
Mcdonald, H. L. and Gibling, M. R. 2001. Biotic-sediment interactions in a sequence stratigraphic framework: The Late Carboniferous Sydney Mines Formation at Morien Bay, Nova Scotia. Geological Society of America Abstracts with Programs.Google Scholar
Milner, A. R. 1980. The tetrapod assemblage from Nyrany, Czechslovakia., p. 439496. In Panchen, A. L. (ed.), The Terrestrial Environment and the Origin of Land Vertebrates. London, Academic Press.Google Scholar
Pearson, P. N. 1992. Walking traces of the giant myriapod Arthropleura from the Strathclyde Group (Lower Carboniferous) of Fife. Scottish Journal of Geology, 28:127133.CrossRefGoogle Scholar
Proctor, C. J. 1998. Arthropleurids from the Westphalian D of Writhlington Geological Nature Reserve, Somerset. Proceedings of the Geologists' Association, 109, pt. 2:9398.CrossRefGoogle Scholar
Retallack, G. J. 2001. Soils of the Past: An Introduction to Paleopedology. Blackwell Scientific, London, 404 p.CrossRefGoogle Scholar
Richardson, E. S. Jr. 1959. Pennsylvanian invertebrates of the Mazon Creek area, Illinois; Trilobitomorpha, Arthropleurida; [Part 1]: Fieldana: Geology (New Series) 12:6976.Google Scholar
Rolfe, W. D. I. 1969. Arthropleuridae. p. R607R620. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology. Pt. R. Arthropoda 4 (2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Rolfe, W. D. I. and Ingham, J. K. 1967. Limb structure, affinity, and diet of the Carboniferous centipede Arthropleura. Scottish Journal of Geology, 3:118124.CrossRefGoogle Scholar
Ryan, R. J. 1986. Fossil myriapod trails in the Permo-Carboniferous strata of northern Nova Scotia, Canada. Maritime Sediments and Atlantic Geology, 22:156161.Google Scholar
Schneider, J. and Barthel, M. 1997. Eine Taphoceoenose mit Arthropleura (Arthropoda) aus dem Rotliegend (?Unterperm) des Dohlen-Becken (Elbe-Zone, Sachsen). Freiberger Forschungsheft, C466:183223.Google Scholar
Smithson, T. R. 1985. The morphology and relationships of the Carboniferous amphibian Eoherpeton watsoni Panchen. Zoological Journal of the Linnean Society, 85:317410.CrossRefGoogle Scholar
Tasch, P. 1980. Paleobiology of the Invertebrates: Data Retrieval from the Fossil Record. John Wiley and Sons, New York, 975 p.Google Scholar
Trewin, N. H. 1994. A draft system for the identification and description of arthropod trackways. Palaeontology, 37:811823.Google Scholar
Waterlot, G. 1934. Etude de la faune continentale du terrain houiller sarrolorrain: Etude des Gites mineraux de la France. Bassin houiller de la Sarre et de la Lorraine 2, Faune fossile, 320 p.Google Scholar
Waterlot, G. 1939. A propos des Arthropleura du terrain houiller de la Sarre et de la Lorraine. Annales Societe Geologique du Nord, 59:1719.Google Scholar
Whyte, M. A. 2005. A gigantic fossil arthropod trackway. Nature, 438:576.CrossRefGoogle ScholarPubMed
Wilson, H. M. 2003. Functional morphology of locomotion in the giant Paleozoic millipede Arthropleura: Insights from trace fossils and kinematics of locomotion in extant millipedes. Geological Society of America Abstracts with Program, 35:538.Google Scholar