Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T03:00:41.028Z Has data issue: false hasContentIssue false

The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids

Published online by Cambridge University Press:  14 July 2015

Russell Garwood
Affiliation:
School of Earth, Atmospheric and Environmental Sciences and The Manchester X-Ray Imaging Facility, School of Materials, University of Manchester, Manchester, M13 9PL, UK,
Jason Dunlop
Affiliation:
Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, D-10115 Berlin, Germany,

Abstract

This paper serves two roles. First, it acts as an introduction to Blender, an open-source computer graphics program, which can be of utility to paleontologists. To lessen the software's otherwise steep learning curve, a step-by-step guide to create an idealized reconstruction of a fossil in the form of a three-dimensional model in Blender, or to use the software to render results from ‘virtual paleontology' techniques, is provided as an online supplemental data file. Second, here we demonstrate the use of Blender with a case study on the extinct trigonotarbid arachnids. We report the limb articulations of members of the Devonian genus Palaeocharinus on the basis of exceptionally preserved fossils from the Rhynie Cherts of Scotland. We use these newly reported articulations to create a Blender model, and draw comparisons with the gait of extant arachnids to produce as accurate a representation of the trigonotarbid flexing its limbs and walking as possible, presented in additional online supplemental data files. Knowledge of the limb articulations of trigonotarbid arachnids also allows us to discuss their functional morphology: trigonotarbids' limbs and gait were likely comparable to extant cursorial spiders, but lacked some innovations seen in more derived arachnids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, R. L., Laurini, C., and Richter, M. 2012. A palaeobiologist's guide to “virtual” micro-CT preparation. Palaeontologia Electronica, 15:6T, 17p.Google Scholar
Arvo, J. R. 1986. Backward ray tracing. Developments in Ray Tracing, SIGGRAPH '86, 12:259263.Google Scholar
Barth, F. G. 1985. Slit sensilla and the measurement of cuticular strains, p. 162188. InNeurobiology of Arachnids. Springer-Verlag, New York.CrossRefGoogle Scholar
Barth, F. 2012. Strain and substrate motion: spider strain detection; p. 251273. InBarth, F. G., Humphrey, J. A. C., and Srinivasan, M. V.(eds.), Frontiers in Sensing. Springer.CrossRefGoogle Scholar
Bercovici, A., Hadley, A., and Villanueva-Amadoz, U. 2009. Improving depth of field resolution for palynological photomicrography. Palaeontologia Electronica, 12, 12p.Google Scholar
Biancardi, C. M., Fabrica, C. G., Polero, P., Loss, J. F., and Minetti, A. E. 2011. Biomechanics of octopedal locomotion: kinematic and kinetic analysis of the spider Grammostola mollicoma. The Journal of Experimental Biology, 214:3,4333,442.CrossRefGoogle ScholarPubMed
Buckland, W. 1837. The Bridgewater Treatises on the Power, Wisdom, and Goodness of God, as Manifested in the Creation. Treatise VI: Geology and Mineralogy Considered with Reference to Natural Theology. William Pickering, London, 143p.Google Scholar
Claridge, M. F. and Lyon, A. G. 1961. Lung-books in the Devonian Palaeocharinidae (Arachnida). Nature, 191:1,1901,191.CrossRefGoogle Scholar
Clarke, J. 1986. The comparative functional morphology of the leg joints and muscles of five spiders. Bulletin of the British Arachnological Society, 7:3747.Google Scholar
Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed Ray Tracing. Computer Graphics, 18:137145.CrossRefGoogle Scholar
Dunlop, J. A. 1994a. Filtration mechanisms in the mouthparts of tetrapulmonate arachnids (Trigonotarbida, Araneae, Amblypygi, Uropygi, Schizomida). Bulletin of the British Arachnological Society, 9:267273.Google Scholar
Dunlop, J. A. 1994b. Palaeobiology of the Trigonotarbida. Ph.D. Thesis, University of Manchester, 614p.Google Scholar
Dunlop, J. A. 1996. A trigonotarbid arachnid from the Silurian of Ludford Lane, Shropshire. Palaeontology, 39:605614.Google Scholar
Dunlop, J. A. and Braddy, S. J. 1997. Slit-like structures on the prosomal appendages of the eurypterid Baltoeurypterus. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 1997:3138.CrossRefGoogle Scholar
Dunlop, J. A. and Garwood, R. J.In press. Tomographic reconstruction of the exceptionally preserved trigonotarbid arachnid Eophrynus prestvicii. Acta Palaeontologica Polonica.Google Scholar
Dunlop, J. A. and Martill, D. M. 2002. The first whipspider (Arachnida: Amblypygi) and three new whipscorpions (Arachnida: Thelyphonida) from the Lower Cretaceous Crato Formation of Brazil. Transactions of the Royal Society of Edinburgh, Earth Sciences, 92:325334.CrossRefGoogle Scholar
Dunlop, J. A. and Rößler, R. 2013. The youngest trigonotarbid, from the Permian of Chemnitz in Germany. Fossil Record, 16:229243.CrossRefGoogle Scholar
Dunlop, J. A. and Selden, P. A. 2004. A trigonotarbid arachnid from the Lower Devonian of Tredomen, Wales. Palaeontology, 47:1,4691,476.CrossRefGoogle Scholar
Dunlop, J. A., Kamenz, C., and Talarico, G. 2009. A fossil trigonotarbid arachnid with a ricinuleid-like pedipalpal claw. Zoomorphology, 128:305313.CrossRefGoogle Scholar
Fayers, S. R. and Trewin, N. H. 2004. A review of the palaeoenvironments and biota of the Windyfield chert. Transactions of the Royal Society of Edinburgh, Earth Sciences, 94:325339.CrossRefGoogle Scholar
Fayers, S. R., Dunlop, J. A., and Trewin, N. H. 2005. A new Early Devonian trigonotarbid arachnid from the Windyfield Chert, Rhynie, Scotland. Journal of Systematic Palaeontology, 2:269284.CrossRefGoogle Scholar
Foelix, R. 2011. Biology of Spiders, third edition. Oxford University Press, Oxford, viii + 419 p.Google Scholar
Frič, A. 1904. Palaeozoische Arachniden. Privately published with support from the Imperial Academy, Vienna. Dr. Eduard Grégr, Prague, 80p.CrossRefGoogle Scholar
Garwood, R. J. and Dunlop, J. A. 2011. Morphology and systematics of Anthracomartidae (Arachnida: Trigonotarbida). Palaeontology, 54:145161.CrossRefGoogle Scholar
Garwood, R. J., Dunlop, J. A., Giribet, G., and Sutton, M. D. 2011. Anatomically modern Carboniferous harvestmen demonstrate early cladogenesis and stasis in Opiliones. Nature Communications, 2:444.CrossRefGoogle ScholarPubMed
Garwood, R. J., Dunlop, J. A., and Sutton, M. D. 2009. High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids. Biology Letters, 5:841844.CrossRefGoogle ScholarPubMed
Garwood, R. J., Rahman, I. A., and Sutton, M. D. 2010. From clergymen to computers—the advent of virtual palaeontology. Geology Today, 26:96100.CrossRefGoogle Scholar
Garwood, R. J., Ross, A., Sotty, D., Chabard, D., Charbonnier, S., Sutton, M. D., and Withers, P. J. 2012. Tomographic Reconstruction of Neopterous Carboniferous Insect Nymphs. PLoS ONE, 7:e45779.CrossRefGoogle ScholarPubMed
Garwood, R. J. and Sutton, M. D. 2010. X-ray micro-tomography of Carboniferous stem-Dictyoptera: new insights into early insects. Biology Letters, 6:699702.CrossRefGoogle ScholarPubMed
Garwood, R. J. and Sutton, M. D. 2012. The enigmatic arthropod Camptophyllia. Palaeontologia Electronica, 15, 12p.Google Scholar
Giles, S. and Friedman, M. 2013. Virtual reconstruction of brain anatomy in early ray-finned fishes (Osteichthyes: Actinopterygii). Journal of Palaeontology, 88:636651.CrossRefGoogle Scholar
Haug, J. T. and Haug, C. 2012. An unusual fossil larva, the ontogeny of achelatan lobsters, and the evolution of metamorphosis. Bulletin of Geosciences, 88:195206.CrossRefGoogle Scholar
Haug, J. T., Maas, A., Haug, C., and Waloszek, D. 2011. Sarotrocercus oblitus–small arthropod with great impact on the understanding of arthropod evolution? Bulletin of Geosciences, 86:725736.CrossRefGoogle Scholar
Haug, J. T., Waloszek, D., Maas, A., Liu, Y., and Haug, C. 2012. Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology, 55:369399.CrossRefGoogle Scholar
Hess, R. 2010. The Essential Guide to Learning Blender 2.6. Focal Press, London, UK, 416p.Google Scholar
Hirst, S. 1923. On some arachnid remains from the Old Red Sandstone. Annals and Magazine of Natural History, 12:455474.CrossRefGoogle Scholar
Hirst, S. and Maulik, S. 1926. On some arthropod remains from the Rhynie chert (Old Red Sandstone). Geological Magazine, 63:6971.CrossRefGoogle Scholar
Hutchinson, J. R., Anderson, F. C., Blemker, S. S., and Delp, S. L. 2005. Analysis of hindlimb muscle moment arms in Tyrannosaurus rex using a three-dimensional musculoskeletal computer model: implications for stance, gait, and speed. Palaeobiology 31:676701.CrossRefGoogle Scholar
Hyžný, M., Józsa, Š., Dunlop, J. A., and Selden, P. A. 2013. A fossil arachnid from Slovakia: the Carboniferous trigonotarbid Anthracomartus voelkelianus Karsch, 1882. Arachnology, 16:2126.CrossRefGoogle Scholar
Kamenz, C., Dunlop, J. A., Scholtz, G., Kerp, H., and Hass, H. 2008. Microanatomy of Early Devonian book lungs. Biology Letters, 4:212215.CrossRefGoogle ScholarPubMed
Manton, S. M. 1977. The Arthropoda: Habits, Functional Morphology, and Evolution. Clarendon Press, Oxford, 527p.Google Scholar
Molnar, J. L., Pierce, S. E., Clack, J. A., and Hutchinson, J. R. 2012. Idealized landmark-based geometric reconstructions of poorly preserved fossil material: a case study of an early tetrapod vertebra. Palaeontologia Electronica, 15:118.Google Scholar
Parry, S. F., Noble, S. R., Crowley, Q. G., and Wellman, C. H. 2011. A high-precision U–Pb age constraint on the Rhynie Chert Konservat-Lagerstätte: time scale and other implications. Journal of the Geological Society, London, 168:863872.CrossRefGoogle Scholar
Pepato, A. R., Rocha, C. E. F., and Dunlop, J. A. 2010. Phylogenetic position of the acariform mites: sensitivity to homology assessment under total evidence. BMC Evolutionary Biology, 10:123.CrossRefGoogle ScholarPubMed
Petrunkevitch, A. I. 1949. A study of Palaeozoic Arachnida. Transactions of the Connecticut Academy of Arts and Sciences, 37:69315.Google Scholar
Petrunkevitch, A. I. 1953. Paleozoic and Mesozoic Arachnida of Europe. Geological Society of America, Memoir 53, Boulder, 128p.Google Scholar
Pittman, M., Gatesy, S. M., Upchurch, P., Goswami, A., and Hutchinson, J. R. 2013. Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface. PLoS ONE, 8:e63115.CrossRefGoogle Scholar
Pocock, R. I. 1911. A monograph of the terrestrial Carboniferous Arachnida of Great Britain. Monographs of the Palaeontographical Society, 64:184.CrossRefGoogle Scholar
Poschmann, M. and Dunlop, J. A. 2010. Trigonotarbid arachnids from the Lower Devonian (lower Emsian) of Alken an der Mosel (Rhineland-Palatinate, SW Germany). Paläontologische Zeitschrift, 84:467484.CrossRefGoogle Scholar
Poschmann, M. and Dunlop, J. A. 2011. Trigonotarbid arachnids from the Lower Devonian (Siegenian) of Bürdenbach (Lahrbach Valley, Westerwald area, Rhenish Slate Mountains, Germany). Paläontologische Zeitschrift, 85:433447.CrossRefGoogle Scholar
Rahman, I. A., Adcock, K., and Garwood, R. J. 2012. Virtual fossils: a new resource for science communication in paleontology. Evolution: Education and Outreach, 5:635641.Google Scholar
Rice, C. M., Trewin, N. H., and Anderson, L. I. 2002. Geological setting of the Early Devonian Rhynie cherts, Aberdeenshire, Scotland: an early terrestrial hot spring system. Journal of the Geological Society, 159:203214.CrossRefGoogle Scholar
Selden, P. A., Shear, W. A., and Bonamo, P. M. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology, 34:241281.Google Scholar
Sellers, W. I., Manning, P. L., Lyson, T., Stevens, K., and Margetts, L. 2009. Virtual palaeontology: gait reconstruction of extinct vertebrates using high performance computing. Palaeontologia Electronica, 12:1126.Google Scholar
Shear, W. A. 2000. Gigantocharinus szatmaryi, a new trigonotarbid arachnid from the Late Devonian of North America (Chelicerata: Arachnida: Trigonotarbida). Journal of Paleontology, 74:2531.CrossRefGoogle Scholar
Shear, W. A., Selden, P. A., Rolfe, W. D. I., Bonamo, P. M., and Grierson, J. D. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida: Trigonotarbida). American Museum Novitates, 2901:174.Google Scholar
Shultz, J. W. 1987. Walking and surface film locomotion in terrestrial and semi-aquatic spiders. Journal of Experimental Biology, 444:427444.CrossRefGoogle Scholar
Shultz, J. W. 1989. Morphology of locomotor appendages in Arachnida: evolutionary trends and phylogenetic implications. Zoological Journal of the Linnean Society, 97:155.CrossRefGoogle Scholar
Shultz, J. W. 1990. Evolutionary morphology and phylogeny of Arachnida. Cladistics, 6:138.CrossRefGoogle Scholar
Shultz, J. W. 1999. Muscular anatomy of a whipspider, Phrynus longipes (Pocock) (Arachnida: Amblypygi), and its evolutionary significance. Zoological Journal of the Linnean Society, 126:81116.CrossRefGoogle Scholar
Shultz, J. W. 2007. A phylogenetic analysis of the arachnid orders based on morphological characters. Zoological Journal of the Linnean Society, 150:221265.CrossRefGoogle Scholar
Spagna, J. C. and Peattie, A. M. 2012. Terrestrial locomotion in arachnids. Journal of Insect Physiology, 58:599606.CrossRefGoogle ScholarPubMed
Spagna, J. C., Valdivia, E. A., and Mohan, V. 2011. Gait characteristics of two fast-running spider species (Hololena adnexa and Hololena curta), including an aerial phase (Araneae: Agelenidae). Journal of Arachnology, 39:8491.CrossRefGoogle Scholar
Spencer, A. R. T., Hilton, J., and Sutton, M. D. 2012. Combined methodologies for three-dimensional reconstruction of fossil plants preserved in siderite nodules: Stephanospermum braidwoodensis nov. sp. (Medullosales) from the Mazon Creek lagerstätte. Review of Palaeobotany and Palynology, 188:117.CrossRefGoogle Scholar
Stein, M. 2010. A new arthropod from the early Cambrian of North Greenland, with a “great appendage”-like antennula. Zoological Journal of the Linnean Society, 158:477500.CrossRefGoogle Scholar
Stein, M. and Selden, P. A. 2012. A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. Journal of Systematic Palaeontology, 10:361383.CrossRefGoogle Scholar
Sutton, M. D. 2008. Tomographic techniques for the study of exceptionally preserved fossils. Proceedings of the Royal Society of London, Series B, Biological Sciences, 275:1,5871,593.Google Scholar
Sutton, M. D., Garwood, R. J., Siveter, D. J., and Siveter, D. J. 2012. Spiers and VAXML: a software toolkit for tomographic visualisation, and a format for virtual specimen interchange. Palaeontologia Electronica, 15, 14p.Google Scholar
Sutton, M. D., Rahman, I. A., and Garwood, R. J. 2013. Techniques for Virtual Palaeontology. Wiley-Blackwell, 208p.CrossRefGoogle Scholar
Ward, T. M. and Humphreys, W. F. 1981. Locomotion in burrowing and vagrant wolf spiders (Lycosidae). Journal of Experimental Biology, 92:305321.CrossRefGoogle Scholar
Whitted, T. 1980. An improved illumination model for shaded display. Graphics and Image Processing, 23:343349.Google Scholar
Wilson, D. M. 1967. Stepping patterns in tarantula spiders. Journal of Experimental Biology, 47:133151.CrossRefGoogle Scholar
Zamora, S., Rahman, I. A., and Smith, A. B. 2012. Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE, 7:e38296.CrossRefGoogle ScholarPubMed