Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-18T19:34:04.093Z Has data issue: false hasContentIssue false

The visceral skeleton and jaw suspension in the durophagous hybodontid shark Tribodus limae from the Lower Cretaceous of Brazil

Published online by Cambridge University Press:  20 May 2016

Jennifer A. Lane
Affiliation:
Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA, Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Strasse 10, 80333 Munich, Germany
John G. Maisey
Affiliation:
Division of Paleontology, American Museum of Natural History, New York, NY 10024, USA,

Abstract

The visceral skeleton (including complete mandibular, hyoid, and branchial arches) and teeth of the Lower Cretaceous hybodontid shark Tribodus limae are described based on well preserved fossil material. Jaw suspension and musculature are reconstructed, representing the first reconstruction of jaw musculature in a hybodont. The jaw suspension of Tribodus is similar to batoids and advanced galeomorphs in lacking direct cranio–palatine articulations and having skeletal jaw support by the hyoid arch alone (unlike most other hybodonts), but differs from batoids in that an intact hyoid arch is present. As in Asteracanthus and Lonchidion, the jaws do not extend to the snout, and were connected symphysially but not fused. CT scanning reveals the presence of supportive ‘trabecular cartilage’ struts in force-bearing regions of the jaws, representing the first report of these structures in an extinct chondrichthyan. Five branchial arches are present, of which pharyngobranchial, epibranchial, and ceratobranchial elements are observed although hypobranchials and basibranchials were presumably also present. A pharyngobranchial blade is present, as in some other hybodonts (e.g., Lissodus) and extant galeomorphs (e.g., Heterodontus), and the posteriormost pharyngobranchials are unfused. Tribodus is considered durophagous, based on presence of ‘trabecular cartilage’ struts and a weakly heterodont monognathic pavement dentition of flattened hexagonal teeth, as in extant myliobatoid rays. SEM examination shows that teeth of T. limae are anaulacorhize with a double layer of single crystallite enameloid (SCE), and confirms the presence of columnar osteodentine, as in other Acrodontidae.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1833–1844. Recherches Sur Les Poissons Fossiles. Neuchatel, 5 vols. 1420p.Google Scholar
Anderson, P. S. L. 2008. Cranial muscle homology across modern gnathostomes. Biological Journal of the Linnaean Society, 94:195216.Google Scholar
Brito, P. M. 1992. Nouvelles données sur l'anatomie et la position systématique de Tribodus limae Brito and Ferreira, 1989 (Chondrichthyes, Elasmobranchii) du Crétacé Inférieur de la Chapada do Araripe (N-E Brésil). Géobios, 14:143150.Google Scholar
Brito, P. M. and Ferreira, P. L. N. 1989. The first hybodont shark, Tribodus limae n.g., n. sp., from the Lower Cretaceous of Chapada do Araripe (North-East Brazil). Anais da Academia Brasileira de Ciências, 61:5357.Google Scholar
Broom, R. 1909. Fossil fishes of the upper Karroo Beds of South Africa. Annals of the South African Museum, 7:251269.Google Scholar
Brough, J. 1935. On the structure and relationships of the hybodont sharks. Memoirs of the Manchester Literary and Philosophical Society, 79:3548.Google Scholar
Brown, C. 1900. Ueber das Genus Hybodus und seine systematische Stellung. Palaeontographica, 46:149174.Google Scholar
Cappetta, H. 1992. Nouveaux Rhinobatoidei (Neoselachii, Rajiformes) à denture spécialisée du Maastrichtian du Maroc. Remarques sur l'évolution dentaire des Rajiformes et des Myliobatiformes. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 187:3152.Google Scholar
Cappetta, H. and Case, G. R. 1999. Additions aux faunes de sélaciens du Crétacé du Texas (Albien supérieur-Campanien). Palaeo Ichthyologica, 9:5111.Google Scholar
Cappetta, H., Buffetaut, E., Cuny, G., and Suteethorn, V. 2006. A new elasmobranch assemblage from the Lower Cretaceous of Thailand. Palaeontology, 49:547555.Google Scholar
Casier, E. 1961. Matériaux pour la faune ichthyologique Eocrétacique du Congo. Annales, Musée royal de l'Afrique centrale, Tervuren 8, 39:196.Google Scholar
Cavin, L., Boudad, L., Duffaud, S., Kabiri, L., Le Lœuff, J., Rouget, I., and Tong, H. 2001. L'évolution paléoenvironnementale des faunes de poisons du Crétacé supérieur du basin du Tafilalt et des régions avoisinantes (Sud-Est du Maroc): implications paléobiogéographiques. Comptes Rendus de l'Académie des Sciences de Paris, Sciences de la Terre et des Planètes, 333:677683.Google Scholar
Cuny, G., Ouaja, M., Srarff, D., Schmitz, L., Buffetaut, E., and Benton, M. J. 2004. Fossil sharks from the Early Cretaceous of Tunisia. Revue de Paleobiologie, Geneve, 9:127142.Google Scholar
Cuny, G., Rieppel, O., and Sand, P. M. 2001. The shark fauna from the Middle Triassic (Anisian) of North-Western Nevada. Zoological Journal of the Linnaean Society, 133:285301.Google Scholar
Daniel, J. F. 1934. The Elasmobranch Fishes, 3rd edition. University of California Press, Berkeley, 332p.Google Scholar
Dean, M. N. and Motta, P. J. 2004. Anatomy and functional morphology of the feeding apparatus of the Lesser Electric Ray, (Elasmobranchii: Batoidea). Journal of Morphology, 262:462483.Google Scholar
Dean, M. N. and Summers, A. P. 2006. Mineralized cartilage in the skeleton of chondrichthyan fishes. Zoology, 109:164168.Google Scholar
De Carvalho, M. R. 1996. Higher-level elasmobranch phylogeny, basal squaleans, and Paraphyly, p. 3562. InStiassny, M. L. J., Parenti, L. R., and Johnson, G. D.(eds.), Interrelationships of Fishes. Academic Press, San Diego.Google Scholar
Dick, J. R. F. 1978. On the Carboniferous shark Tristychius arcuatus Agassiz from Scotland. Transactions of the Royal Society of Scotland, 70:63109.Google Scholar
Dutheil, D. 1999. An overview of the freshwater fish fauna from the Kem Kem beds (Late Cretaceous: Cenomanian) of southeastern Morocco, p. 553563. InArratia, G. and Schultze, H.-P.(eds), Mesozoic Fishes 2-Systematics and the Fossil Record. Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
Gillis, J. A., and Donoghue, P. C. J. 2007. The homology and phylogeny of chondrichthyan tooth enameloid. Journal of Morphology, 268:3349.Google Scholar
Gomez-Pallerola, J. E. 1985. Nuevos hybodontidos del Cretácio Inferior de Santa María de Meyá (Lérida). Boletin Geologico y Minero, 96 (4):372380.Google Scholar
Gomez-Pallerola, J. E. 1992. Nota sobre los tiburones hybodontos de las calizas litográficas del Cretácio Inferior del Montsec (Lérida). Boletin Geologico y Minero, 103:333.Google Scholar
Goodrich, E. S. 1958. Studies on the Structure and Development of Vertebrates, volume 1. New York: Dover Publications, 485p.Google Scholar
Gregory, W. K. 1904. The relations of the anterior visceral arches to the chondrocranium. Biological Bulletin, 7:5569.Google Scholar
Haller, G. 1926. Über die Entwicklung, den Bau und die Mechanik des Kieferapparates des Dornhais (Acanthias vulgaris). Zeitschrift für Mikroskopisch-Anatomische Forschung, 5:749793.Google Scholar
Holmgren, N. 1940. Studies on the head in fishes, part I: development of the skull in sharks and rays. Acta Zoologica, 21:51267.Google Scholar
Hotton, N. 1952. Jaws and teeth of American xenacanth sharks. Journal of Paleontology, 26 (3):489500.Google Scholar
Huber, D. R., Dean, M. N., and summers, A. P. 2008. Hard prey, soft jaws and the ontogeny of feeding mechanics in the spotted ratfish . Journal of the Royal Society Interface, 5:941952.Google Scholar
Huxley, T. H. 1876. On Ceratodus fosteri, with observations on the classification of fishes. Proceedings of the Zoological Society of London, 1876:2459.Google Scholar
Koken, E. 1907. Ueber Hybodus. Geologische und Paläontologische Abhandlungen, 5:261276.Google Scholar
Kuhn, E. 1945. Ueber Acrodus-Funde aus dem Grenzbitumenhorizant der anisischen Stufe der Trias des Monte San Giorgio (Kt. Tessin). Eclogae Geologicae Helvetiae, 38:662673.Google Scholar
Landemaine, O. 1991. Sélaciens nouveaux du Crétacé supérieur du sud-ouest de la France. Quelques apports à la systématique des élasmobranches. Société Amicale des Géologues Amateurs (MNHN, Paris). SAGA information, hors-série 1:145.Google Scholar
Lane, J. A. 2010. Morphology of the braincase in the Cretaceous hybodont shark Tribodus limae (Chondrichthyes: Elasmobranchii), based on CT scanning. American Museum Novitates, 3681:170.Google Scholar
Lane, J. A. and Maisey, J. G. 2009. Pectoral anatomy of Tribodus limae (Elasmobranchii: Hybodontiformes) from the Lower Cretaceous of Northeastern Brazil. Journal of Vertebrate Paleontology, 29:2538.Google Scholar
Liem, K. F., Bemis, W. E., Walker, W. F. Jr., and Grande, L.(eds.). 2001. Functional anatomy of the vertebrates: an evolutionary perspective, 3rd ed. New York: Harcourt College Publishers, 703p.Google Scholar
Luther, A. 1909. Untersuchungen über die vom N. trigeminus innervierte Muskulatur der Selachier (Haie und Rochen) unter Berücksichtigung ihrer Beziehungen zu benachbarten Organen. Helsingfors Acta Societatis Scientiarum Fennicae 36:1176.Google Scholar
Maisey, J. G. 1980. An evaluation of jaw suspension in sharks. American Museum Novitates, 2706:117.Google Scholar
Maisey, J. G. 1982. The anatomy and interrelationships of Mesozoic hybodont sharks. American Museum Novitates, 2724:148.Google Scholar
Maisey, J. G. 1983. Cranial anatomy of Hybodus basanus Egerton from the Lower Cretaceous of England. American Museum Novitates, 2758:164.Google Scholar
Maisey, J. G. 1986. Anatomical revision of the fossil shark Hybodus fraasi (Chondrichthyes; Elasmobranchii). American Museum Novitates, 2857:116.Google Scholar
Maisey, J. G. 1987. Cranial anatomy of the Lower Jurassic shark Hybodus reticulatus (Chondrichthyes; Elasmobranchii), with comments on hybodontid systematics. American Museum Novitates, 2878:139.Google Scholar
Maisey, J. G. 1989a. Hamiltonichthys mapesi, g. & sp. nov. (Chondrichthyes; Elasmobranchii), from the Upper Pennsylvanian of Kansas. American Museum Novitates, 2931:142.Google Scholar
Maisey, J. G. 1989b. Visceral skeleton and musculature of a Late Devonian shark. Journal of Vertebrate Paleontology, 9:174190.Google Scholar
Maisey, J. G. 2000. Continental break-up and the distribution of fishes of Western Gondwana during the Early Cretaceous. Cretaceous Research, 21:281314.Google Scholar
Maisey, J. G. 2007. The braincase in Paleozoic symmoriiform and cladoselachian sharks. Bulletin of the American Museum of Natural History, 307:1122.Google Scholar
Maisey, J. G. 2008. The postorbital palatoquadrate articulation in elasmobranchs. Journal of Morphology, 269:10221040.Google Scholar
Maisey, J. G. 2012. What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution. Journal of Fish Biology, 80:918951.Google Scholar
Maisey, J. G. and De Carvalho, M. R. 1997. A new look at old sharks. Nature, 385:779780.Google Scholar
Maisey, J. G., Naylor, G. J. P., and Ward, D. J. 2004. Mesozoic elasmobranchs, neoselachian phylogeny and the rise of modern elasmobranch diversity, p. 1756. InArratia, G. and Tintori, A.(eds), Mesozoic Fishes 3—Systematics, Palaeoenvironments and Biodiversity. Verlag Dr. Friedrich Pfeil, Munich.Google Scholar
Miles, R. S. 1969. Features of placoderm diversification and the evolution of the arthrodire feeding mechanism. Transactions of the Royal Society of Scotland, 68:123170.Google Scholar
Nessov, L. A., Zhelago, V. I., and Averianov, A. O. 1998. A new locality of Late Cretaceous snakes, mammals and other vertebrates in Africa (western Libya). Annales de Paléontologie, 84:265274.Google Scholar
Peyer, B. 1946. Die Schweizerischen Funde von Asteracanthus (Strophodus). Schweiz Paläontologische Abhandlungen, 64:1101.Google Scholar
Rage, J.-C. and Cappetta, H. 2002. Vertebrates from the Cenomanian, and the geological age of the Draa Ubari fauna (Libya). Annales de Paléontologie, 88:7984.Google Scholar
Reif, W. E. 1973. Morphologie und Ultrastruktur des Hai-“Schmelzes.” Zoologica Scripta, 2:231250.CrossRefGoogle Scholar
Rieppel, O. 1981. The hybodontiform sharks from the Middle Triassic of Mte. San Giorgio, Switzerland. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 161:324353.Google Scholar
Schaeffer, B. 1981. The xenacanth shark neurocranium, with comments on elasmobranch monophyly. Bulletin of the American Museum of Natural History, 169:166.Google Scholar
Shirai, S. 1992. Squalean Phylogeny. Sapporo: Hokkaido University Press, 151p.Google Scholar
Summers, A. P., Koob, T. J., and Brainerd, E. L. 1998. Stingray jaws strut their stuff. Nature, 395:450451.Google Scholar
Summers, A. 2000. Stiffening the stingray skeleton—an investigation of durophagy in myliobatid stingrays (Chondrichthyes, Batoidea, Myliobatidae). Journal of Morphology, 243:113126.Google Scholar
Thomson, K. S. 1982. An early Triassic hybodont shark from northern Madagascar. Postilla, 186:116.Google Scholar
Vullo, R., Néraudeau, D., and Videt, B. 2003. Un faciès de type falun dans le Cénomanien basal de Charente-Maritime (France). Annales de Paléontologie, 89:171189.Google Scholar
Vullo, R., Néraudeau, D., Allain, R., and Cappetta, H. 2005. Un nouveau gisement à microrestes de vertébrés continentaux et littoraux dans le Cénomanien inférieur de Fouras (Charente-Maritime, Sud-Ouest de la France). Comptes Rendus Palevol, 4:95107.Google Scholar
Werner, C. 1989. Die elasmobranchier-fauna des Gebel Dist Member der Bahariya Formation (Obercenoman) der Oase Bahariya, Ägypten. Palaeo Ichthyologica, 5:5112.Google Scholar
Werner, C. 1994. Die kontinentale Wirbeltierfauna aus der unteren Oberkreide des Sudan (Wadi Milk Formation). Berliner Geowissenschaftliche Abhandlungen E (B. Krebs-Festschrift), 13:221249.Google Scholar
Wilga, C. 2000. Durophagy in sharks: feeding mechanics of the Hammerhead . Journal of Experimental Biology, 203:27812796.Google Scholar
Wilga, C. 2002. A functional analysis of jaw suspension in elasmobranchs. Biological Journal of the Linnaean Society, 75:483502.Google Scholar
Wilga, C. D. 2005. Morphology and evolution of the jaw suspension in lamniform sharks. Journal of Morphology, 265:102119.Google Scholar
Wilga, C. D. and Motta, P. J. 1998. Feeding mechanism of the Atlantic Guitarfish Rhinobatos lentiginosus: modulation of kinematic and motor activity. Journal of Experimental Biology, 201:31673184.Google Scholar
Wilga, C. D., Wainwright, P. C., and Motta, P. J. 2000. Evolution of jaw depression mechanics in aquatic vertebrates: insights from Chondrichthyes. Biological Journal of the Linnaean Society, 71:165185.Google Scholar
Wischnitzer, S. 1993. Atlas and Dissection Guide for Comparative Anatomy, 5th ed. New York: W. H. Freeman and Company, 295p.Google Scholar
Wolfram, K. E. 1984. The functional anatomy of the jaw suspension of (Chondrichthyes, Selachii) with application to fossil forms. Unpublished M.S. Degree Thesis, University of Nebraska at Lincoln, 249p.Google Scholar
Woodward, A. S. 1916. The fossil fishes of the English Wealden and Purbeck Formations. Part I. Monographs of the Palaeontological Society of London, 1916:148.Google Scholar
Woodward, A. S. 1919. The fossil fishes of the English Wealden and Purbeck Formations. Part II. Monographs of the Palaeontological Society of London, 1919:105148.Google Scholar