Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T16:08:21.367Z Has data issue: false hasContentIssue false

Virtual reconstruction of endocast anatomy in early ray-finned fishes (Osteichthyes, Actinopterygii)

Published online by Cambridge University Press:  14 July 2015

Sam Giles
Affiliation:
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, and
Matt Friedman
Affiliation:
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK, and

Abstract

Cranial endocasts, infillings of the skeletal void that once contained the brain and associated soft tissues, represent detailed anatomical structures that have long been the focus of paleontological investigation. We applied computed tomographics (CTs) in order to generate endocast models for the Paleozoic actinopterygian fishes Mimipiscis and Kentuckia, which serve as key representatives of anatomically primitive, early ray fins in analyses of early vertebrate relationships. The resultant endocranial models generally corroborate existing accounts of endocranial anatomy in these genera, drawn from descriptions of the inner face of the brain cavity. However, the endocasts also provide new anatomical details, the most significant of which are the presence in Mimipiscis of widely divergent olfactory tracts, small optic lobes, and anterior and posterior semicircular canals that extend dorsal to the roof of the endocranial chamber. By contrast, Kentuckia possesses a single, straight olfactory tract, wide optic lobes, and anterior and posterior semicircular canals that do not reach the dorsal surface of the endocast. In each of these features, Kentuckia resembles stratigraphically younger actinopterygians such as Lawrenciella and Kansasiella, whereas Mimipiscis more closely resembles sarcopterygians and other outgroups. This character distribution provides further support for earlier phylogenetic interpretations of these genera.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 18381844. Recherches Sur Les Poissons Fossiles. Neuchatel 5 vols, 1420p.Google Scholar
Andrews, S. M., Long, J., and Ahlberg, P. 2006. The structure of the sarcopterygian Onychodus jandemarrai n. sp. from Gogo, Western Australia: with a functional interpretation of the skeleton. Transactions of the Royal Society of Edinburgh Earth Sciences, 96:197307.CrossRefGoogle Scholar
Arratia, G. and Cloutier, R. 2004. A new cheirolepidid fish from the Middle–Upper Devonian of Red Hill, Nevada, U.S.A., p. 583598. InArratia, G., Wilson, M. V., and Cloutier, R.(eds.). Recent Advances in the Origin and Early Radiation of Vertebrates. Verlag, Dr. Friedrich Pfeil, Munich.Google Scholar
Balfour, F. M. and Parker, W. N. 1882. On the structure and development of Lepidosteus. Philosophical Transactions of the Royal Society of London, 173:359442.Google Scholar
Basden, A. M. and Young, G. C. 2001. A primitive actinopterygian neurocranium from the Early Devonian of Southeastern Australia. Journal of Vertebrate Paleontology, 21:754766.CrossRefGoogle Scholar
Basden, A. M., Young, G. C., Coates, M. I., and Ritchie, A. 2000. The most primitive osteichthyan braincase? Nature, 403:185188.CrossRefGoogle ScholarPubMed
Bjerring, H. C. 1971. The nerve supply to the second metamere basicranial muscle in osteolepiform vertebrates, with some remarks on the basic composition of the endocranium. Acta Zoologica, 52:189225.CrossRefGoogle Scholar
Bjerring, H. C. 1991. Two intracranial ligaments supporting the brain of the brachiopterygian fish Polypterus senegalus. Acta Zoologica, 72:4147.CrossRefGoogle Scholar
Brazeau, M. D. 2009. The braincase and jaws of a Devonian “acanthodian” and modern gnathostome origins. Nature, 457:305308.CrossRefGoogle ScholarPubMed
Campbell, K. S. W. and Barwick, R. E. 1982. The neurocranium of the primitive dipnoan Dipnorhynchus sussmilchi (Etheridge). Journal of Vertebrate Paleontology, 2:286327.CrossRefGoogle Scholar
Campbell, K. and Barwick, R. E. 2000. The braincase, mandible and dental structures of the Early Devonian lungfish Dipnorhynchus kurikae from Wee Jasper, New South Wales. Records of the Australian Museum, 52:103128.CrossRefGoogle Scholar
Casier, E. 1954. Contributions à l'étude des poissons fossiles de la Belgique. XI. Note additionelle relative à “Stereolepis” (=Osorioichthys nov. num) et à l'origine de l'interoperculaire. Bulletin de l'Institut royal des Sciences naturelles de Belgique, 30:112.Google Scholar
Chang, M. 1982. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, South-Western China. Unpublished Ph.D dissertation, Department of Geology, University of Stockholm, 113p.Google Scholar
Chang, M. and Yu, X. B. 1981. A new crossopterygian, Youngolepis praecursor, gen. et sp. nov., from Lower Devonian of E. Yunnan, China. Scientia Sinica, 24:8997.Google Scholar
Choo, B. 2011. Revision of the actinopterygian genus Mimipiscis (=Mimia) from the Upper Devonian Gogo Formation of Western Australia and the interrelationships of the early Actinopterygii. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 102:77104.CrossRefGoogle Scholar
Cignoni, P., Corsini, M., and Ranzuglia, G. 2008. Meshlab: An open-source 3D mesh processing system. Ercim News, 63:4546.Google Scholar
Clément, G. and Ahlberg, P. E. 2010. The endocranial anatomy of the early sarcopterygian Powichthys from Spitsbergen, based on CT scanning, p. 365379. InElliot, D. K., Maisey, J. G., Yu, X., and Miao, D.(eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Verlag, Dr. Friedrich Pfeil, Munich.Google Scholar
Coates, M. I. 1998. Actinopterygians from the Namurian of Bearsden, Scotland, with comments on early actinopterygian neurocrania. Zoological Journal of the Linnean Society, 122:2759.CrossRefGoogle Scholar
Coates, M. I. 1999. Endocranial preservation of a Carboniferous actinopterygian from Lancashire, U.K., and the interrelationships of primitive actinopterygians. Philosophical Transactions of the Royal Society B, Biological Sciences, 354:435462.CrossRefGoogle Scholar
Coates, M. I. and Friedman, M. 2010. Litoptychus bryanti and characteristics of stem tetrapod neurocrania, p. 389416. InElliot, D. K., Maisey, J. G., Yu, X., and Miao, D.(eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Verlag, Dr. Friedrich Pfeil, Munich.Google Scholar
Cope, E. D. 1880. Second contribution to the history of the vertebrata of the Permian Formation of Texas. Proceedings of the American Philosophical Society, 19:3858.Google Scholar
Davis, S. P., Finarelli, J. A., and Coates, M. I. 2012. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature, 486:247250.CrossRefGoogle ScholarPubMed
De Burlet, H. M. 1934 Vergleichende Anatomie des stato-akustischen Organs. Handbuch der vergleichenden Anatomie der Wirbeltiere. Berlin, Urban and Schwarzenberg, 2:12931432.Google Scholar
Dunkle, D. H. 1964. Preliminary description of a paleoniscoid fish from the Upper Devonian of Ohio. Cleveland Museum of Natural History, 3:116.Google Scholar
Eastman, C. R. 1908. Devonian fishes of Iowa, Iowa Geological Survey, 18:29386.CrossRefGoogle Scholar
Edinger, T. 1929. Die Fossilen Gehirne. Ergebnisse der Anatome und Entwicklungsgeschichte, 28:1249.Google Scholar
Evans, W. H. 1953. A catalogue of the American Hesperiidae indicating the classification and nomenclature adopted in the British Museum. Part III. Pyrginae Section 2. British Museum (Natural History), London.Google Scholar
Friedman, M. 2007. Styloichthys as the oldest coelacanth: Implications for early osteichthyan interrelationships. Journal of Systematic Palaeontology, 5:289343.CrossRefGoogle Scholar
Friedman, M. and Blom, H. 2006. A new actinopterygian from the Famennian of East Greenland and the interrelationships of Devonian ray-finned fishes. Journal of Paleontology, 80:11861204.CrossRefGoogle Scholar
Friedman, M., Coates, M., and Anderson, P. 2007. First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs. Evolution and Development, 9:329337.CrossRefGoogle Scholar
Friedman, M. and Brazeau, M. D. 2010. A reappraisal of the origin and basal radiation of the Osteichthyes. Journal of Vertebrate Paleontology, 30:3656.CrossRefGoogle Scholar
Gai, Z., Donoghue, P. C. J., Zhu, M., and Janvier, P. 2011. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature, 476:324327.CrossRefGoogle ScholarPubMed
Gardiner, B. G. 1984. The relationships of the palaeoniscid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bulletin of the British Museum (Natural History), 37, 428p.Google Scholar
Gardiner, B. G. and Bartram, A. W. H. 1977. The homologies of ventral cranial fissures in osteichthyans, p. 227245. InAndrews, S. M., Miles, R. S., and Walker, A. D.(eds.)Problems in Vertebrate Evolution. Academic Press, London.Google Scholar
Gardiner, B. G. and Schaeffer, B. 1989. Interrelationships of lower actinopterygian fishes. Zoological Journal of the Linnean Society, 97:135187.CrossRefGoogle Scholar
Gardiner, B., Schaeffer, B., and Masserie, J. A. 2005. A review of the lower actinopterygian phylogeny. Zoological Journal of the Linnean Society, 144:511525.CrossRefGoogle Scholar
Garwood, R. and Dunlop, J.The walking dead: Blender as a tool for palaeontologists. Journal of Paleontology, 88:735746.CrossRefGoogle Scholar
Gauldie, R. W., Mulligan, K., and Thompson, R. K. 1987. The otoliths of a chimaera, the New Zealand elephant fish Callorhynchus milii. New Zealand Journal of Marine and Freshwater Research, 21:275280.CrossRefGoogle Scholar
Goatley, C. H. R., Bellwood, D. R., and Bellwood, O. 2010. Fishes on coral reefs: Changing roles over the past 240 million years. Paleobiology, 36:415427.CrossRefGoogle Scholar
Gómez, A., Durán, E., Ocaña, F. M., and Jiménez-Moya, F. 2009. Observations on the brain development of the sturgeon Acipenser naccarii, p. 155174. InCarmona, R., Domezain, A., Gallego, M. G., Hernando, J. A., Rodríguez, R., and Ruiz-Rejón, M.(eds.), Biology, Conservation and Sustainable Development of Sturgeons. Springer, Netherlands.CrossRefGoogle Scholar
Goujet, D. 1984. Les poissons placodermes du Spitsberg. Cahiers du Paléontologie C. N. R. S., Paris, 284p.Google Scholar
Hamel, M.-H. 2005. A new lower actinopterygian from the Early Permian of the Paraná Basin, Brazil. Journal of Vertebrate Paleontology, 25:1926.CrossRefGoogle Scholar
Hamel, M-H. and Poplin, C. 2008. The braincase anatomy of Lawrenciella schaefferi, actinopterygian from the Upper Carboniferous of Kansas (U.S.A.). Journal of Vertebrate Paleontology, 28:9891006.CrossRefGoogle Scholar
Jaekel, O. 1927. Der Kopf der Wirbeltiere. Bergmann, 1927.Google Scholar
Jarvik, E. 1954. On the visceral skeleton in Eusthenopteron with a discussion of the parasphenoid and palatoquadrate in fishes. Kungliga Svenska Vetenskapsakademiens Handlingar, 5:1104.Google Scholar
Jarvik, E. 1980. Basic Structure and Evolution of Vertebrates. Academic Press, London.Google Scholar
Jerison, H. 1973. Evolution of the Brain and Intelligence. Academic Press, New York.Google Scholar
Kruska, D. C. T. 1988. The brain of the basking shark (Cetorhinus maximus). Brain, Behavior and Evolution, 32:353363.CrossRefGoogle ScholarPubMed
Lacépède, B. G. 1798 –1903. Histoire naturelle des poissons, 5 vols. Chez Plassan, Paris.CrossRefGoogle Scholar
Linneaus, C. 1758. Systema naturae, EditioHolmiae, X.v. 1, 824p.Google Scholar
Linneaus, C. 1766. Systema naturae sive regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Laurentia Salvii, Holmiae, 12th ed., vol. 1, pt. 1., 532p.Google Scholar
Long, J., Choo, B., and Young, G. C. 2008. A new basal actinopterygian fish from the Middle Devonian Aztec Siltstone of Antarctica. Antarctic Science, 20:393412.CrossRefGoogle Scholar
Long, J. and Trinajstic, K. 2010. The Late Devonian Gogo Formation Lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annual Review of Earth and Planetary Sciences, 38:255279.CrossRefGoogle Scholar
Lovell, J. M., Findlay, M. M., Moate, R. M., Nedwell, J. R., and Pegg, M. A. 2005. The inner ear morphology and hearing abilities of the Paddlefish (Polyodon spathula) and the Lake Sturgeon (Acipenser fulvescens). Comparative Biochemistry and Physiology Part A, Molecular and Integrative Physiology, 142:286296.CrossRefGoogle ScholarPubMed
Maisey, J. G. 2005. Braincase of the Upper Devonian shark Cladodoides wildungensis (Chondrichthyes, Elasmobranchii), with observations on the braincase in early Chondrichthyans. Bulletin of the American Museum of Natural History, p. 1103.Google Scholar
Maisey, J. G. 2007. The braincase in Paleozoic symmoriiform and cladoselachian sharks. Bulletin of the American Museum of Natural History, p. 1122.Google Scholar
Marsh, O. C. 1874. Small size of the brain in Tertiary mammals. American Journal of Science, 8:6667.Google Scholar
Mathiesen, C. and Popper, A. N. 1987. The ultrastructure and innervation of the ear of the gar, Lepisosteus osseus. Journal of Morphology, 194:129142.CrossRefGoogle ScholarPubMed
Millot, J. and Anthony, J. 1965. Anatomy de Latimeria chalumnae. Vol. II. Système nerveux et organes de sens. Éditions du Centre National de la Recherche Scientifique, Paris. 131p.Google Scholar
Moodie, R. L. 1915. A new fish brain from the Coal Measures of Kansas, with a review of other fossil brains. The Journal of Comparative Neurology, 25:135181.CrossRefGoogle Scholar
Newberry, J. S. 1857. New fossil fishes from the Devonian rocks of Ohio. American Journal of Science, 24:147149.Google Scholar
Nielsen, E. 1942. Studies on Triassic Fishes from East Greenland I. Glaucolepis and Boreosomus. Meddelelser om Gr⊘nland, 146:1309.Google Scholar
Nieuwenhuys, R. 1982. An overview of the organization of the brain of actinopterygian fishes. American Zoologist, 22:287310.CrossRefGoogle Scholar
Nieuwenhuys, R., Kremers, J. P. M., and van Huijzen, C. 1977. The brain of the crossopterygian fish Latimeria chalumnae: a survey of its gross structure. Anatomy and Embryology, 151:157169.CrossRefGoogle ScholarPubMed
Northcutt, R. G., Neary, T. J., and Senn, D. G. 1978. Observations on the brain of the coelacanth Latimeria chalumnae: External anatomy and quantitative analysis. Journal of Morphology, 155:181192.CrossRefGoogle ScholarPubMed
Owen, R. 1841. Report on British Fossil Reptiles, Pt II. Report of the British Association for the Advancement of Science, 11:60204.Google Scholar
Owen, R. 1875. On fossil evidences of a sirenian mammal (Eotherium aegypiacum, Owen), from the Nummulitic Eocene of the Mokattam Cliffs, near Cairo. Quarterly Journal of the Geological Society of London, 31:100104.CrossRefGoogle Scholar
Pearson, D. M. and Westoll, T. S. 1979. The Devonian actinopterygian Cheirolepis Agassiz. Transactions of the Royal Society of Edinburgh, 70:337399.CrossRefGoogle Scholar
Poplin, C. M. 1974. Étude de quelques paléoniscidés pennsylvaniens du Kansas. Cahiers du Paléontologie C. N. R. S., Paris, 151p.Google Scholar
Poplin, C. M. 1984. Lawrenciella schaefferi n. g., n. sp. (Pisces: Actinopterygii) and the use of endocranial characters in the classification of the palaeonisciformes. Journal of Vertebrate Paleontology, 4:413421.CrossRefGoogle Scholar
Poplin, C. M. and de Ricqlés, A. J. 1970. A technique of serial sectioning for the study of undecalcified fossils. Curator, 13:720.CrossRefGoogle Scholar
Popper, A. N. 1978. Scanning electron microscopic study of the otolithic organs in the bichir (Polypterus bichir) and shovel-nose sturgeon (Scaphirhynchus platorynchus). The Journal of Comparative Neurology, 181:117128.CrossRefGoogle ScholarPubMed
Pradel, A. 2010. Skull and brain anatomy of Late Carboniferous Sibyrhynchidae (Chondrichthyes, Iniopterygia) from Kansas and Oklahoma (U.S.A.). Geodiversitas, 32:595661.CrossRefGoogle Scholar
Pradel, A., Langer, M., Maisey, J. G., Geffard-Kuriyama, D., Cloetens, P., Janvier, P., and Tafforeau, P. 2009. Skull and brain of a 300-million-year-old chimaeroid fish revealed by synchrotron holotomography. Proceedings of the National Academy of Sciences of the United States of America, 106:52245228.CrossRefGoogle ScholarPubMed
Rayner, D. H. 1951. III.—On the cranial structure of an early palæoniscid, Kentuckia, gen. nov. Transactions of the Royal Society of Edinburgh, 62:5383.CrossRefGoogle Scholar
Romer, A. S. 1937. The braincase of the Carboniferous crossopterygian Megalichthys nitidus. Bulletin of the Museum of Comparative Zoology, 73p.Google Scholar
Rupp, B. and Northcutt, G. 1998. The diencephalon and pretectum of the white sturgeon (Acipenser transmontanus): A cytoarchitectonic study. Brain, Behavior and Evolution, 51:239262.CrossRefGoogle ScholarPubMed
Säve-Söderbergh, G. 1952. On the skull of Chirodipterus wildungensis Gross, an Upper Devonian dipnoan from Wildungen. Kungliga Svenska Vetenskapsakademiens Handlingar, 4:128.Google Scholar
Schaeffer, B. 1981. The xenacanth shark neurocranium, with comments on elasmobranch monophyly. Bulletin of the American Museum of Natural History, 169:166.Google Scholar
Schaeffer, B. and Dalquest, W. W. 1978. A palaeonisciform braincase from the Permian of Texas, with comments on cranial fissures and the posterior myodome. Novitates, 2658:115.Google Scholar
Schultze, H.-P. 1973. Crossopterygier mit heterozerker Schwanzflosse aus dem Oberdevon Kanadas, nebst einer Beschreibung von Onychodontida-Resten aus dem Mitteldevon Spaniens und aus dem Karbon der U.S.A. Palaeontographica Abteilung A, 143:188208.Google Scholar
Senn, D. G. 1976. Brain structure in Calamoichthys calabaricus Smith 1865 (Polypteridae, Brachiopterygii). Acta Zoologica, 57:121128.CrossRefGoogle Scholar
Smith, J. 1939. A surviving fish of the order Actinistia. Transactions of the Royal Society of South Africa, 27:4750.CrossRefGoogle Scholar
Sollas, W. J. 1904. A method for the investigation of fossils by serial sections. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 196:259265.Google Scholar
Stensiö, E. A. 1921. Triassic Fishes from Spitzbergen, Vol. 1. A. Holshausen, Vienna.CrossRefGoogle Scholar
Stensiö, E. A. 1922. Notes on certain crossopterygians. Proceedings of the Zoological Society of London, 92:12411271.CrossRefGoogle Scholar
Stensiö, E. A. 1927. The Downtonian and Devonian vertebrates of Spitsbergen. 1. Family Cephalaspidae. Skrifter om Svalbard og Ishavet, 12:1391.Google Scholar
Stensiö, E. A. 1963a. Anatomical studies on the arthrodiran head. Kungliga Svenska Vetenskapsakademiens Handlingar, 9:1419.Google Scholar
Stensiö, E. A. 1963b. The brain and the cranial nerves in fossil, lower craniate vertebrates. Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, Mat.-Naturv. Klasse. Ny serie 13. Oslo, Norway.Google Scholar
Sutton, M. D., Garwood, R. J., Siveter, D. J., and Siveter, D. J. 2012. SPIERS and VAXML: A software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontologia Electronica, 15, 15p. palaeo-electronica.org/content/94-issue-2-2012-technical-articles/226-ct-toolkits.Google Scholar
Taverne, L. 1997. Osorioichthys marginis, “paléonisciforme” du Famennien de Belgique, et la phylogénie des Actinoptérygiens dévoniens (Pisces). Bulletin de l'Institut royal des Sciences naturelles de Belgique, 67:5778.Google Scholar
Thomson, K. S. and Campbell, K. S. W. 1971. The structure and relationships of the primitive Devonian lungfish—Dipnorhynchus sussmilchi (Etheridge). Bulletin of the Peabody Museum of Natural History, Yale University, 38, 190p.Google Scholar
Traquair, R. H. 1890. LXI.—Observations on some fossil fishes from the lower Carboniferous Rocks of Eskdale, Dumfriesshire. Annals and Magazine of Natural History, 6:491494.CrossRefGoogle Scholar
Trinajstic, K., Marshall, C., Long, J., and Bifield, K. 2007. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters, 3:197200.CrossRefGoogle ScholarPubMed
Walsh, S. A. and Knoll, M. A. 2011. Directions in palaeoneurology. Special Papers in Palaeontology, 86:263279.Google Scholar
White, E. I. 1933. XIV.—New Trassic Palæoniscids from Madagascar. Annals and Magazine of of Natural History, 11:118128.CrossRefGoogle Scholar
Whiteaves, J. F. 1881. On some remarkable fossil fishes from the Devonian rocks of Scaumenac Bay, in the Province of Quebec. Annals and Magazine of Natural History, 8:159162.CrossRefGoogle Scholar
Woodward, A. S. 1891. 1. - The Devonian Fish Fauna of Spitzbergen. Annals and Magazine of Natural History, 8:115.CrossRefGoogle Scholar
Work, D. M. and Mason, C. E. 2003. Mississippian (middle Osagean) ammonoids from the Nada Member of the Borden Formation, Kentucky. Journal of Paleontology, 77:593596.2.0.CO;2>CrossRefGoogle Scholar
Zhu, M., Yu, X., and Janvier, P. 1999. A primitive fossil fish sheds light on the origin of bony fishes. Nature, 397:607610.CrossRefGoogle Scholar
Zhu, M., Yu, X., Wang, W., Zhao, W., and Jia, L. 2006. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature, 441:7780.CrossRefGoogle ScholarPubMed
Zhu, M., Wang, W., and Yu, X. 2010. Meemannia eos, a basal sarcopterygian fish from the Lower Devonian of China - expanded description and significance, p. 199214. InElliot, D. K., Maisey, J. G., Yu, X., and Miao, D.(eds.), Morphology, Phylogeny and Paleobiogeography of Fossil Fishes. Verlag, Dr. Friedrich Pfeil, Munich.Google Scholar
Zhu, M., Zhao, W., Jia, L., Lu, J., Qiao, T., and Qu, Q. 2009. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature, 458:469474.CrossRefGoogle ScholarPubMed
Zwehl, V. 1961. l: Über die Blutgewissversorgnung des Gehirns bei einigen Teleostiern. Zoologische Jahrbuch. Abteilung Anatomie, 79:371438.Google Scholar