Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T01:32:04.280Z Has data issue: false hasContentIssue false

Upper Triassic corals from Nevada, western North America, and the implications for paleoecology and paleogeography

Published online by Cambridge University Press:  20 May 2016

Ewa Roniewicz
Affiliation:
Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00–818 Warszawa, Poland,
George D. Stanley Jr.
Affiliation:
The University of Montana Paleontology Center, Missoula MT 59812, USA,

Abstract

Late Carnian–early Norian corals from the Luning and Osobb formations in west-central Nevada represent an important Late Triassic fauna for understanding the paleoecology and the paleogeography of the eastern Panthalassa region during Late Triassic time. The corals occur in bedded limestone representing biostromes and patch reefs and their composition presages the important global changeover of faunas of the intra-Norian interval. A taxonomic analysis of over 60 specimens reveals a majority of colonial corals ranging from cerioid, astreoid (i.e., cerioid-plocoid lacking walls), meandroid and thamnasterioid types. Surprisingly, remnants of the original aragonite microstructure remain in some specimens, allowing a better comparison with more remote Tethyan corals. In total, 14 genera have been identified from Nevada while two genera remain undetermined. The fauna is composed of species considered typical of both the North American Cordillera and cratonal South America. The following genera and species are new and endemic to the Americas: Khytrastrea silberlingi and K. cuifiamorpha, Flexastrea serialis, Nevadoseris punctata, Areaseris nevadaensis and a new genus Minasteria (with Astrocoenia shastensis Smith, 1927 as type species). Likewise are the new species: Margarogyra silberlingi and Curtoseris dunlapcanyonae. Genera Meandrovolzeia, Margarogyra, Ceriostella, Ampakabastraea, Retiophyllia, Distichomeandra, Curtoseris, Thamnasteria and Astraeomorpha provide important links to the former Tethys province. The revised coral fauna changes previous views of the close taxonomic similarity with the Tethys, instead producing a paleogeographic pattern emphasizing a much greater degree of endemism. This pattern emphasizes the isolation of Nevada from the Tethys and the similarities with some outboard terranes of the Cordillera.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aberhan, M. 1999. Terrane history of the Canadian Cordillera: estimating amounts of latitudinal displacement and rotation of Wrangellia and Stikinia. Geological Magazine, 136:481492.Google Scholar
Alloiteau, J. 1958. Monographie des Madréporaires fossiles de Madagascar. Annales Géologiques de Madagascar 25, 218p.Google Scholar
Beauvais, L. 1981. Sur la taxinomie des Madréporaires mésozoïques. Acta Palaeontologica Polonica, for 1980, 25:345360.Google Scholar
Belasky, P. and Runnegar, B. 1994. Permian longitudes of Wrangellia, Stikinia, and Eastern Klamath terranes based on coral biogeography. Geology, 22:10591098.Google Scholar
Benzoni, F., Stefani, F., Stolarski, J., Pichon, M., Mitta, G., and Galli, P. 2007. Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contributions to Zoology, 76:3554.Google Scholar
Blodgett, R. B. 2008. Paleontology and stratigraphy of the Upper Triassic Kamishak Formation in the Puale Bay-Cape Kekurnoi-Alinchak Bay area, Karluc C-4 and C-5 Quadrangle, Alaska Peninsula, p. 131160. InReifenstuhl, R. R. and Decker, P. L.(eds.), Bristol Bay—Alaska Peninsula Region, Overview of 2004–2007 Geologic Research. Alaska Division of Geological and Geophysical Surveys Report of Investigations 2008-1.Google Scholar
Blodgett, R. B. and Stanley, G. D. Jr. (eds.). 2008. The Terrane Puzzle: New Perspectives on Paleontology and Stratigraphy from the North American Cordillera. Geological Society of America Special Paper 442, 326p.Google Scholar
Bourne, B. C. 1900. The Anthozoa. InLankester, R.(ed.), Treatise on Zoology, II, Chapter VI, London, 84p.Google Scholar
Camp, C. L. 1980. Large ichthyosaurus from the Upper Triassic of Nevada. Palaeontographica, 170A:139200.Google Scholar
Caruthers, A. H. and Stanley, G. D. Jr. 2008a. Systematic analysis of Upper Triassic silicified sclaractinan corals from Wrangellia and the Alexander terrane, Alaska and British Columbia. Journal of Palaeontology, 83:470491.Google Scholar
Caruthers, A. H. and Stanley, G. D. Jr. 2008b. Late Triassic silicified shallow-water corals and other marine fossils from Wrangellia and the Alexander terrane, Alaska and Vancouver Island, British Columbia. Geological Society of America Special Paper 442, p. 149177.Google Scholar
Clapp, C. H. and Shimer, H. W. 1911. The Sutton Jurassic of the Vancouver Group, Vancouver Island. Boston Society of Natural History, Proceedings 34:426438.Google Scholar
Coates, A. G. and Jackson, J. B. C. 1987. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology, 13:363378.CrossRefGoogle Scholar
Coates, A. and Oliver, W. A. 1973. Coloniality in Zoantharian Corals, p. 303327. InBoardman, R. S., Cheetham, A. H. and Oliver, W.A. Jr. (eds.), Animal Colonies. Development and Functions through Time. Dowden, Hutchinson and Ross, Inc., Stroudsburg, Penn., iii–ix, 601p.Google Scholar
Coney, P. J., Jones, D. L., and Monger, J. W. H. 1980. Cordilleran suspect terranes. Nature, 288:329333.Google Scholar
Cuif, J. P. 1967. Structure de quelques polypiers phacéloïdes triasiques. Bulletin de la Société géologique de France, for 1966, 8:125132.Google Scholar
Cuif, J. P. 1975a. Recherches sur les Madréporaires du Trias II. Astraeoida. Revision des genres Montlivaltia et Thecosmilia. Étude de quelques types structuraux du Trias de Turquie. Bulletin du Muséum National d'Histoire Naturelle, Paris, série 3, no. 275, Sciences de la Terre, for 1974, 40:297400.Google Scholar
Cuif, J. P. 1975b. Caractères morphologiques, microstructuraux et systématiques des Pachythecalidae, nouvelle famille de Madréporaires triasiques. Geobios, 8, 3:157180.Google Scholar
Cuif, J. P. 1975c. Recherches sur les Madréporaires du Trias. III. Etude des structures pennulaires chez les Madréporaires triasiques. Bulletin du Muséum National d'Histoire Naturelle, Paris, série 3, no. 310, Sciences de la Terre, 44:46127.Google Scholar
Cuif, J. P. 1976. Recherches sur les Madréporaires du Trias. IV. Formes cério-méandroides et thamnastérioides du Trias des Alpes et du Taurus sud-anatolien. Bulletin du Muséum National d'Histoire Naturelle, Paris, série 3, no. 381, Sciences de la Terre, 53:68195.Google Scholar
Cuif, J.P., Lecointre, G., Perrin, Ch., Tillier, A., and Tillier, S. 2003. Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for new taxonomic framework. Zoologica Scripta, 32:459473.Google Scholar
Dana, J. D. 18461849. Zoophytes. United States Exploring Expedition during the years 1836–1842, 2:140p.Google Scholar
Diener, C. 1923. Ammonoidea Trachyostraca aus der mittleren und oberen Trias von Timor. Jaarboek Mijnwezen in Nederlandsch Oost Indie, 49:71276.Google Scholar
Duncan, P. M. 1867. A Monograph of the British fossil corals. Second Series, Pt. IV. no.1. Corals from the zones of Ammonites Planorbis and Ammonites Angulatus in the Liassic Formation. Palaeontographical Society, London, i–ii, 43p.Google Scholar
Esper, E. J. C. 1788 –1830. Die Pflanzenthiere. Fortsetzungen, 1, 17941797, Nürnberg, 230 p.Google Scholar
Flügel, E. 2002. Triassic reef patterns, p. 391463. InKiessling, W., Flügel, E., Golonka, J.(eds), Phanerozoic Reef Patterns. Society for Sedimentary Geology, Special Publication 72, Tulsa, Oklahoma.Google Scholar
Frech, F. 1890. Die Korallenfauna der Trias. Die Korallen der juvavischen Triasprovinz. Palaeontographica 37, 116p.Google Scholar
Fukami, H., Budd, A. F., Paulay, G., Sulé-Cava, A., Chen, CH. A., Iwao, K., and Knowlton, N. 2004. Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature, 427:832835.Google Scholar
Gill, G. A. 1967. Quelques précisions sur les septes perforés des polypiers mésozoïques. Mémoires de la Société Géologique de France, n.s., 106:5581.Google Scholar
Goodwin, D. H. and Stanley, G. D. Jr. 1997. Norian sponge and coral biostromes in the Antimonio Formation, northwestern Sonora, Mexico. Revista Mexicana de Ciencias Geològicas, 14:160166.Google Scholar
Haas, O. 1909. Bericht über neue Aufsammlungen in den Zlambachmergeln der Fischerwiese bei Alt-Aussee. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 22:145167.Google Scholar
Hoover, P. R. 1991. Late Triassic cyrtinoid spirifinacean brachiopods from western North America and their biostratigraphic and biogeographic implications. Bulletins of American Paleontology, 100:63109.Google Scholar
Insalaco, E. 1998. The descriptive nomenclature and classification of growth fabrics in fossil scleractinian reefs. Sedimentary Geology, 118:159186.Google Scholar
Katvala, E. C. and Stanley, G. D. Jr. 2008. Conodont biostratigraphy and facies correlations in a Late Triassic island arc, Keku Strait, southeast Alaska. Geological Society of America Special Paper, 442:181226.Google Scholar
Kristan-Tollmann, E. and Tollmann, A. 1981. Die stellung der Tethys in der Trias und die Herkunft ihrer fauna. Mitteilungen Österreichischen Geologischen Gesellschaft, 74/75:129135.Google Scholar
Kristan-Tollmann, E. and Tollmann, A. 1983. Tethys Faunenelemente in der Trias des USA. Mitteilungen der Österreichischen Geologischen Gesellschaft, 76:213272.Google Scholar
Kühn, O. 1936. Beschriebung der Korallen, p. 1929. InHeritsch, F. and Kühn, O., Geschiebe von Triaskorallen von Plabutsch bei Graz. Mitteilungen des Naturwissenschaftlichen Vereines für Steiermark, 73:1932.Google Scholar
LamarckJ. B. P., de. J. B. P., de. 1801. Système des animaux sans vertèbres. Paris, 432p.Google Scholar
Lamaskin, T. D., Stanley, G. D. Jr., Caruthers, A. H., and Rosenblatt, M. R. 2011. Detrital record of Upper Triassic reefs in the Olds Ferry Terrane, Blue Mountains Province, northeastern Oregon. Palaios, 26:779789.Google Scholar
Lamouroux, J. V. F. 1821. Exposition méthodique des ordres de polypiers avec les planches d'Ellis et Solander, et quelques planches nouvelles. Paris, iii, 115p.Google Scholar
Laube, G. 1865. Die Fauna der Schichten von St. Cassian. Denkschriften der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Wien, 24:223296.Google Scholar
Lesauvage, M. 1823. Mémoire sur un nouveau genre de Polypier fossile. Mémoires de la Société d'Histoire Naturelle, 1:241244.Google Scholar
Martindale, R. C., Bottjer, D. J., and Corsetti, F. A. 2012. Platy coral patch reefs from eastern Panthalassa (Nevada, U.S.A.): unique reef construction in the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 313–314:4158.Google Scholar
McLearn, F. H. 1930. A preliminary study of the faunas of the Upper Triassic Schooler Creek Formation, western Peace River, B. C. Transactions of the Royal Society of Canada, series 3, sec. 4, 24:1317.Google Scholar
McLearn, F. H. 1939. Some species of the Neo-Triassic genera, Juvavites, Isculites, Serenites, Himavatites, Cyrtopleurites, and Pteroceras. Transactions of the Royal Society of Canada, series 3, sec. 4, 33:5158.Google Scholar
Melnikova, G. K. 1971. Novye dannye o morfologii, mikrostrukture i systematike pozdnetriasovyh Thamnasterioidea. Paleontologiceskiy Zhurnal, 2:521–35. (In Russian)Google Scholar
Melnikova, G. K. 1974. The peculiarities of histological structures and microstructures of the septal apparatus in the Late Triassic Scleractinia, p. 220224. InSokolov, B. S.(ed.), Ancient Cnidaria, 1. Transactions of the Institute of Geology and Geophysics, Siberian Branch, Academy of Sciences USSR, 201.Google Scholar
Melnikova, G. K. 1975. Pozdnetriasovye skleraktinii yugo-vostochnogo Pamira. Donish, Dushanbe, 234p. (In Russian)Google Scholar
Melnikova, G. K. 1983. Novye pozdnetriasovye skleraktinii Pamira. Paleontologiceskiy Zhurnal, 1:4553. (In Russian)Google Scholar
Melnikova, G. K. 1984. Novye pozdnetriasovye korally otriada Archaeocoeniida Alloiteau, 1952 yugo-vostochnogo Pamira, p. 4355. InDjalilov, M. R.(ed.), Novye vidy iskopaemoy fauny i flory Tajikistana. Donish, Dushanbe, 217p. (In Russian)Google Scholar
Melnikova, G. K. 1986. Scleractinians as indicators for differentiation of carbonate deposits, p. 3067. InOleynikov, A. N. and Zhamoida, A. I.(eds.), Parastratigraphic groups of Triassic flora and fauna. Trudy VSEGEI, 334, n. s., Leningrad. (In Russian)Google Scholar
Melnikova, G. K. 1996. Novye triasovye kolonialnye skleraktinii yugo-vostochnogo Pamira. Paleontologiceskiy Zhurnal, 2:833. (In Russian)Google Scholar
Melnikova, G. K. 2001. Tip Coelenterata, p. 3080. InRozanov, A. Yu. and Sheveriev, A. A., Atlas triasovyh bespozvonochnyh Pamira. Nauka, Moskva. (In Russian)Google Scholar
Melnikova, G. K. and Bychkov, Yu. M. 1986. Late Triassic scleractinians of the Kenkeren (Koryakskiy Khrebet), p. 63–81. Correlation of Permo–Triassic Sediments of East USSR. Geological Correlation Programme, Project 203, Vladivostok. (In Russian)Google Scholar
Melnikova, K. G. and Roniewicz, E. 1990. On a new stylophyllid genus, Pamirophyllum (Scleractinia, Upper Triassic). Acta Palaeontologica Polonica, 35:8590.Google Scholar
Milne Edwards, H. and Haime, J. 1848. Observations sur les polypiers de la famille des Astréides. Comptes Rendus hebdomadaires des séances de l'Académie des Sciences, Paris, 27:466469.Google Scholar
Milne Edwards, H. and Haime, J. 1849. Mémoire sur les polypiers appartenant à la famille des Oculinides, au groupe intermédiaire des Pseudoastréides et à la famille des Fongides. Comptes Rendus hebdomadaires des séances de l'Académie des Sciences, 29 (4):6773.Google Scholar
Milne Edwards, H. and Haime, J. 1851. Monographie des polypiers fossiles des terraines paléozoïques. Archives du Muséum d'Histoire Naturelle, Paris, 5, 502p.Google Scholar
MojsisovicsE., von. E., von. 1896. Beiträge zur Kenntniss des Obertriadischen Cephalopoden-Faunen des Himalaya. Denkschriften der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Wien, 63:573701.Google Scholar
Montanaro-Gallitelli, E., Russo, A., and Ferrari, P. 1979. Upper Triassic coelenterates of western North America. Bolletino della Società Paleontologica Italiana, 18:133156.Google Scholar
Moore, R. C., Hill, D., and Wells, J. W. 1956. Glossary of morphological terms applied to corals, p. F245F251. InMoore, R. C.(ed.), Treatise on Invertebrate Paleontology, part F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas, 498 p.Google Scholar
Morycowa, E. 1971. Hexacorallia et Octocorallia du Crétacé Inférieur de Rarau (Carpathes Orientales Roumaines). Acta Palaeontologica Polonica, 16:3149.Google Scholar
Morycowa, E. and Roniewicz, E. 1995. Microstructural disparity between Recent fungiine and Mesozoic microsolenine scleractinians. Acta Palaeontologica Polonica, 40:361385.Google Scholar
Mosher, L. C. 1970. New conodont species as Triassic guide fossils. Journal of Paleontology, 44:737742.Google Scholar
Mottern, H. H. Jr. 1962. Pre-Tertiary geology of a portion of Cedar Mountain Nevada. University of California, Berkeley, unpublished MA thesis, 128p.Google Scholar
Muller, S. W. 1936. Triassic coral reefs in Nevada. American Journal of Science, 231:202208.Google Scholar
Muller, S. W. and Ferguson, H. G. 1939. Mesozoic stratigraphy of the Hawthorne and Tonopah quadrangles, Nevada. Geological Society of America Bulletin, 50:15731624.Google Scholar
Münster, G. zu. 1841. Beiträge zur Petrefacten-Kunde von Dr. Wissmann und Graf Münster unter Mitwirkung des Dr. Braun. Bayreuth, In Commission der Buchner'schen Buchhandlung, 151p.Google Scholar
Newton, C. R. 1988. Significance of “Tethyan” fossils in the Cordillera. Science, 242:385391.Google Scholar
Nichols, K. M. and Silberling, N. J. 1977. Stratigraphy and depositional history of the Star Peak Group (Triassic), northwestern Nevada. Geological Society of America Special Paper, 178:173.Google Scholar
Nützel, A. and Erwin, D. H. 2001. New Late Triassic gastropods from the Wallowa Terrane (Idaho) and their biogeographic significance. Facies, 45:8792.Google Scholar
Nützel, A. and Erwin, D. H. 2004. Late Triassic (late Norian) gastropods from the Wallowa Terrane (Idaho, U.S.A.). Paläontologische Zeitschrift, 78:361416.Google Scholar
Oken, L. 1815. Lehrbuch der Naturgeschichte, III, Zoologie, Leipzig, 1:5774.Google Scholar
Oldow, J. S. 1981. Structure and stratigraphy of the Luning allochthon and the kinematics of allochthon emplacement, Pilot Mountains, west-central Nevada. Geological Society of America Bulletin, 92:16471669.Google Scholar
d'Orbigny, A. 1849. Note sur des polypiers fossiles. Paris 12 p.Google Scholar
d'Orbigny, A. 1850. Prodrome de paléontologie stratigraphique universelle. 14e Étage: Corallien, Paris, vol. 2, p. 142.Google Scholar
Orchard, M. J. 1991. Conodonts, time and terranes: an overview of the biostratigraphic record in the western Canadian Cordillera, p. 125. InOrchard, M. J. and McCracken, A. D.(eds.), Ordovician to Triassic conodont paleontology of the Canadian Cordillera. Geological Survey of Canada, Bulletin 417.Google Scholar
Prinz, P. 1991. Mesozoische Korallen aus Nordchile (Mesozoic corals from Northern Chile). Palaeontographica, 216A:147209.Google Scholar
Prinz-Grimm, P. 1995. Triassiche Korallen der südlichen Zentral-Anden. Geologica et Palaeontologica, 29:233234.Google Scholar
Ramovš, A. and Turnšek, D. 1991. The lower Norian (Latian) development with coral fauna on Razor and Planja in the Northern Julian Alps (Slovenia). Razprave IV Razreda SAZU, 32, 6:175213.Google Scholar
Reilly, M. B., Breyer, J. A., and Oldow, J. S. 1980. Petrographic provinces and provenance of the Upper Triassic Luning Formation, west-central Nevada: Summary. Geological Society of America Bulletin, 91:21122151.Google Scholar
Reuss, A. E. 1854. Beiträge zur Charakteristik der Kreideschichten in den Ostalpen, besonders in Gosauthale und am Wolfgangsee. Denkschriften der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Wien, 7, 125p.Google Scholar
Reuss, A. E. 1865. Über einige Anthozoen der Kossener Schichten und der alpinen Trias. Sitzungsberichte der Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Wien, 50, 1:153167.Google Scholar
Romano, S. L. and Cairns, S. 2000. Molecular phylogenetic hypotheses for the evolution of Scleractinian corals. Bulletin of Marine Science, 67:10431068.Google Scholar
Roniewicz, E. 1974. Rhaetian corals of the Tatra Mts. Acta Geologica Polonica, 24:97116.Google Scholar
Roniewicz, E. 1982. Pennular and non-pennular Jurassic scleractinians—some examples. Acta Palaeontologica Polonica, 27:157193.Google Scholar
Roniewicz, E. 1989. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Denkschriften der Österreichische Akademie des Wissenschaften, mathematisch-naturwissenschaftliche Klasse, Wien, 126, 152p.Google Scholar
Roniewicz, E. 1996. Upper Triassic solitary corals from the Gosaukamm and other North Alpine regions. Sitzungsberichte, mathematisch-naturwissenschaftliche Klasse, biologische Wissenschaften und Edrwissenschaften, Abteilung I, 1995, 202:441.Google Scholar
Roniewicz, E. 2010. Uniform habit spectrum vs. taxonomic discrepancy between two succeeding Triassic coral faunas: a proof of the intra-Norian faunal turnover. Palaeoworld, 19:410413.Google Scholar
Roniewicz, E. 2011. Early Norian (Triassic) corals from the Northern Calcareous Alps, Austria, and the intra-Norian faunal turnover. Acta Palaeontologica Polonica, 56:401428.Google Scholar
Roniewicz, E. and Michalík, J. 1998. Rhaetian scleractinian corals in the Western Carpathians. Geologica Carpathica, 49:391399.Google Scholar
Roniewicz, E. and Stanley, G. D. Jr. 1998. Middle Triassic cnidarians from the New Pass Range, Central Nevada. Journal of Paleontology, 72:246256.CrossRefGoogle Scholar
Roniewicz, E. and Stanley, G. D. Jr. 2009. Noriphyllia, a new Tethyan Late Triassic coral genus. Paläontologische Zeitschrift, 83:467478.CrossRefGoogle Scholar
Roniewicz, E., Mandl, G. W., Ebli, O., and Lobitzer, H. 2007. Early Norian scleractinian corals and microfacies data of the Dachstein Limestone of Feisterscharte, southern Dachstein Plateau. Jahrbuch der Geologischen Bundesanstalt, 147:577594.Google Scholar
Rosen, B. R., Aillud, G. S., Bosellini, F. R., Clack, N. J., Insalaco, E., Valdaperas, F. X., and Wilson, M. E. J. 2002. Platy coral assemblages: 200 million years of functional stability in response to the limiting effects of light and turbidity, 1, p. 255264. Proceedings of 9th International Coral Reef Symposium, Bali, Indonesia, 23–27 October 2000.Google Scholar
Sanders, D. and Baron-Szabo, R. C. 2005. Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeography, Palaeoclimatology, Palaeoclimatology, 216:139181.Google Scholar
Sandy, M. R. and Stanley, G. D. Jr. 1993. Late Triassic brachiopods from the Luning Formation, Nevada, and their palaeobiogeographical significance. Palaeontology, 36:439480.Google Scholar
Schäfer, P. 1984. Development of ecologic coral reefs during the later Triassic (Rhaetian) of the Northern Limestone Alps. Palaeontolographica Americana, 54:210218.Google Scholar
Schlichter, D. 1992. A perforated gastrovascular cavity in the symbiotic deep-water coral Leptoseris fragilis: a new strategy to optimize heterotrophic nutrition. Helgoländer Meeresuntersuchungen, 45:426443.Google Scholar
Seilacher, A. 1962. Die Sphinctozoa, eine Gruppe fossiler Kalkschwämme. Akademie. der Wissenschaften und der Literatur, Mainz, Abhandlungen der mathematisch-naturwissenschaftliche Klasse, 10:721790.Google Scholar
Senowbari-Daryan, B. and Stanley, G. D. Jr. 1992. Late Triassic thalamid sponges from Nevada. Journal of Paleontology, 66:183193.Google Scholar
Senowbari-Daryan, B. and Stanley, G. D. Jr. 2009. Taxonomic affinities and paleogeography of Stromatomorpha californica Smith, a distinctive Upper Triassic reef-adapted demosponge. Journal of Paleontology, 83:783793.Google Scholar
Silberling, N. J. 1959. Pre-Tertiary stratigraphy and Upper Triassic paleontology of the Union District Shoshone Mountains, Nevada. U.S. Geological Survey Professional Paper 322, p. 167.Google Scholar
Silberling, N. J. and Tozer, E. T. 1968. Biostratigraphic classification of the marine Triassic in North America. Geological Society of America Special Paper 110, p. 163.Google Scholar
Smith, J. P. 1912. The occurrence of coral reefs in the Triassic of North America. American Journal of Science, 33:9296.Google Scholar
Smith, J. P. 1927. Upper Triassic marine invertebrate faunas of North America. U.S. Geological Survey Professional Paper 141, p. 1135.Google Scholar
Squires, D. F. 1956. A new Triassic fauna from Idaho. American Novitates, 1797, 27p.Google Scholar
Stanley, G. D. Jr. 1979. Paleoecology, structure, and distribution of Triassic coral buildups in western North America. The University of Kansas Paleontological Contributions, 65, 58p.Google Scholar
Stanley, G. D. Jr. 1980. Triassic carbonate buildups of North America: comparison with the Alpine Triassic of Europe. Rivista Italiana di Paleontologia e Stratigrafia, 85:877894.Google Scholar
Stanley, G. D. Jr. 1982. Triassic carbonate development and reefbuilding in western North America. Geologischen Rundschau, 71:10571075.Google Scholar
Stanley, G. D. Jr. 1986. Late Triassic coelenterate faunas of western Idaho and northeastern Oregon: Implications for biostratigraphy and paleogeography, p. 2336. InVallier, T. L. and Brooks, H. C.(eds.), Geology of the Blue Mountains region of Oregon, Idaho, and Washington. Geologic Implications of Paleozoic and Mesozoic Paleontology and Biostratigraphy, Blue Mountains Province, Oregon and Idaho. U.S. Geological Survey Professional Paper 1435.Google Scholar
Stanley, G. D. Jr. 1988. The history of Early Mesozoic reef communities: a three step process. Palaios, 3:170183.Google Scholar
Stanley, G. D. Jr 1994a. Upper Triassic corals from Peru. Palaeontographica, 233A:7598.Google Scholar
Stanley, G. D. Jr. 1994b. Late Paleozoic and early Mesozoic reef-building organisms and paleogeography: the Tethyan-North American connection. Courier Forschungsinstitut Senkenberg, 172:6975.Google Scholar
Stanley, G. D. Jr. 1996. Confessions of a displaced reefer. Palaios, 11:12.Google Scholar
Stanley, G. D. Jr. 2005. Coral microatolls from the Triassic of Nevada: oldest scleractinian examples. Coral Reefs, 24:247.CrossRefGoogle Scholar
Stanley, G. D. Jr. and González-León, C. 1995. Paleogeographic and tectonic implications of Triassic fossils and strata from the Antimonio Formation, northwestern Sonora, p. 116. InJacques-Ayala, C., González-León, C., and Roldán-Quintana, J.(eds.), Studies on the Mesozoic of Sonora and Adjacent Areas. Volume 301.Google Scholar
Stanley, G. D. Jr. and González-León, C. 1997. New scleractinian corals from the Antimonio Formation, northwestern Mexico. Revista Mexicana de Ciencias Geològicas, 14:202207.Google Scholar
Stanley, G. D. Jr. and Senowbari-Daryan, B. 1986. Upper Triassic Dachstein-type reef limestone from the Wallowa Mountains, Oregon: first reported occurrence in the United States. Palaios, 1:172177.Google Scholar
Stanley, G. D. Jr. and Senowbari-Daryan, B. 1999. Upper Triassic reef fauna from the Quesnel Terrane, Central British Columbia, Canada. Journal of Paleontology, 73:787802.Google Scholar
Stanley, G. D. Jr. and Whalen, M. T. 1989. Triassic corals and spongiomorphs from Hells Canyon, Wallowa Terrane, Oregon. Journal of Paleontology, 63:800819.Google Scholar
Stanley, G. D. Jr., and Yancey, T. E. 1990. Paleogeography of the ancient Pacific. Science, 249:680681.Google Scholar
Stanley, G. D. Jr., McRoberts, C., and Whalen, M. T. 2008. Stratigraphy of the Martin Bridge Formation: stratigraphy and depositional environment. Geological Society of America Special Paper 442, p. 227250.Google Scholar
Stanley, G. D. Jr., Gonzalez-Leon, C., Sandy, M. R., Senowbari-Daryan, B., Doyne, P., Tamura, Minoru., and Erwin, D. H. 1994. Upper Triassic invertebrates from the Antimonio Formation, Sonora, Mexico. Journal of Paleontology Memoir 68, 33p.Google Scholar
Tomes, R. F. 1878. On the stratigraphical position of the corals of the Lias of the Midland and Western Countries of England and of South Wales. Quarterly Journal of the Geological Society of London, 34:179195.Google Scholar
Tozer, E. T. 1979. Latest Triassic ammonoid faunas and biochronology, Western Canada. Current Research, Part B. Geological Survey of Canada, Paper 79-1B:127135.Google Scholar
Tozer, E. T. 1982. Marine Triassic faunas of North America; their significance for assessing plate and terrane movements. Geologische Rundschau, 7:10771104.Google Scholar
Turnšek, D. and Ramovš, A. 1987. Upper Triassic (Norian–Rhaetian) reef buildups in the Northern Julian Alps (NW Yugoslavia). Razprave IV Razreda SAZU, 28, 2:2767.Google Scholar
Turnšek, D. and Senowbari-Daryan, B. 1994. Upper Triassic (Carnian–lowermost Norian) corals from the Pantokrator Limestone of Hydra (Greece). Abhandlungen der Geologischen Bundesanstalt, 50:477507.Google Scholar
Vaughan, T. W. and Wells, J. W. 1943. Revision of the suborders, families, and genera of the Scleractinia. Geological Society of America Special Paper 44, xv+363p.Google Scholar
Volz, F. 1896. Die Korallen des Schichten von St. Cassian in Süd Tirol. Palaeontographica, 43:124 p.Google Scholar
Winkler, G. 1861. Der Oberkeuper nach Studien in den bayerischen Alpen. Zeitschrift der Deutschen Geologischen Geselischaft, 13:459521.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, New York, 414p.Google Scholar
Yarnell, J. M. 2000. Paleontology of two North American Triassic reef faunas; implications for terrane Paleogeography. Masters thesis, University of Montana, 141p.Google Scholar
Zankl, H. 1969. Der Hohe Göll. Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der Nordlichen Kalkalpen. Abhandlungen der Senckenbergischen Naturforschender Gessellschaft, 519:1123.Google Scholar
Zonnenveld, J. P., Henderson, C. M., Stanley, G. D. Jr., Orchard, M. J., and Gingras, M. K. 2007. Oldest scleractinian coral reefs on the North American craton: Upper Triassic (Carnian), northern British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology, 243:421450.Google Scholar