Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T00:03:54.430Z Has data issue: false hasContentIssue false

Unraveling species concepts for the Helicoprion tooth whorl

Published online by Cambridge University Press:  14 July 2015

Leif Tapanila
Affiliation:
Department of Geosciences, 921 S. 8th Ave., Idaho State University, Pocatello, ID 83209-8072, USA Division of Earth Sciences, 921 S. 8th Ave., Idaho Museum of Natural History, Pocatello, ID 83209-8096, USA,
Jesse Pruitt
Affiliation:
Division of Earth Sciences, 921 S. 8th Ave., Idaho Museum of Natural History, Pocatello, ID 83209-8096, USA,

Abstract

The genus Helicoprion (Chondricthyes, Euchondrocephali) is preserved primarily by a continuous spiral root that forms the base for more than 130 teeth. Helicoprion is found globally in Lower Permian marine rocks and at least 100 specimens exist in public collections worldwide. Ten species of the genus are reviewed in the context of new morphometric analyses conducted on dozens of specimens. Helicoprion whorls share a common inner spiral geometry that results in exponential growth of tooth and root dimensions. Novel growth equations permit calculation of whorl diameter, volution number and tooth count from incomplete specimens. The results of meristic and geometric analyses identify taxobases that distinguish three emended species concepts. Differentiation of form is evident among specimens only after the second volution or roughly the 85th tooth. Helicoprion davisii has widely spaced, stout teeth with tall cutting surfaces and is distinguished from H. bessonowi, which has narrow, closely spaced teeth with short cutting surfaces. Helicoprion ergassaminon is an intermediate form, having narrow, closely spaced teeth with tall cutting surfaces. Several large specimens in the study are too dissimilar to place in the new emended species concepts.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araki, H. 1980. Discovery of Helicoprion, a Chondrichthyes from Kesennuma City, Miyagi Prefecture, Japan. Journal of the Geological Society of Japan, 86:135137. (In Japanese)Google Scholar
Bamber, E. W., Taylor, G. C., and Procter, R. M. 1968. Carboniferous and Permian stratigraphy of northeastern British Columbia. Geological Survey of Canada, Paper, 68-15:125.CrossRefGoogle Scholar
Bendix-Almgreen, S. E. 1966. New investigations on Helicoprion from the Phosphoria Formation of south-east Idaho, U.S.A. Biologiske Skrifter udgivet af det Kongelige Danske Videnskabernes Selskab, 14:154.Google Scholar
Blakey, R. C. 2012. Global paleogeography for Early Permian. Northern Arizona University. Images and supporting materials available athttp://jan.ucc.nau.edu/rcb7/280moll.jpg.Google Scholar
Bridges, L. W. and DeFord, R. K., 1962. Pre-Carboniferous Paleozoic rocks in central Chihuahua, Mexico. AAPG Bulletin, 45:98104.Google Scholar
Chen, X.-H., Cheng, L., and Yin, K.-G. 2007. The first record of Helicoprion Karpinsky (Helicoprionidae) from China. Chinese Science Bulletin, 52:22462251.CrossRefGoogle Scholar
Chorn, J. 1978. Helicoprion (Elasmobranchii, Edestidae) from the Bone Spring Formation (Lower Permian) of west Texas. University of Kansas Paleontology Contribution Papers, 89:24.Google Scholar
Cortie, M. 1992. The form, function, and synthesis of the molluscan shell, p. 369387. InHargittai, I. and Pickover, C. A.(eds.), Spiral Symmetry, World Scientific.CrossRefGoogle Scholar
Eastman, C. R. 1902. Some Carboniferous cestraciont and acanthodian sharks. Bulletin of the Museum of Comparative Zoology, Harvard University 39:5599.Google Scholar
Eaton, T. H. Jr. 1962. Teeth of edestid sharks. University of Kansas Publications, Museum of Natural History, 12:347362.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4:19.Google Scholar
Hanger, R. A., Strong, E. E., and Ashinhurst, T. 1994. Helicoprion sp. from the Pennsylvanian and Permian Antler Peak Limestone, Lander County, Nevada. Preliminary Geologic Map of the Snow Gulch Quadrangle, Humboldt and Lander Counties, Nevada. USGS Open-File Report, 94–436:2431.Google Scholar
Harwood, D. S. 1992. Stratigraphy of Paleozoic and lower Mesozoic rocks in the northern Sierra Terrane, California. USGS Bulletin, 1957:178.Google Scholar
Hay, O. P. 1907. A new genus and species of fossil shark related to Edestus Leidy. Science, 26:2224.CrossRefGoogle ScholarPubMed
Hay, O. P. 1909. On the nature of Edestus and related genera, with descriptions of one new genus and three new species. Proceedings of the United States National Museum, 37:4361.CrossRefGoogle Scholar
Hoffet, J. H. 1933. Étude géologique sur le centre de l'Indochine entre Tourane et le Mekong. Bulletin de la Service géologique du Indochine, 20:3154.Google Scholar
Huxley, T. H. 1880. On the application of the laws of evolution to the arrangement of the Vertebrata and more particularly the Mammalia. Proceedings of the Zoological Society of London, 649662.Google Scholar
Karpinsky, A. P. 1899. On the edestid remains and its new genus Helicoprion. Zapiski Imperatorskoy Akademii Nauk, 7:167. (In Russian)Google Scholar
Karpinsky, A. P. 1911. Notes on Helicoprion and other edestids. Izvestiya Imperatorskoy Akademii Nauk, 5:11051122. (In Russian)Google Scholar
Karpinsky, A. P. 1915. On the nature of the spiral organ of Helicoprion. Zapiski Ural'skogo Obshchestva Lyubiteley Estestvoznaniya 35:117145. (In Russian)Google Scholar
Kelly, M. A. and Zangerl, R. 1976. Helicoprion (Edestidae) in the Permian of west Texas. Journal of Paleontology, 50:992994.Google Scholar
Larson, E. E. and Birkeland, P. W. 1982. Putnam's Geology, 4th Edition. New York, Oxford University Press, 789p.Google Scholar
Larson, E. R. and Scott, J. B. 1955. Helicoprion from Elko County, Nevada. Journal of Paleontology, 29:918919.Google Scholar
Lebedev, O. A. 2009. A new specimen of Helicoprion Karpinsky, 1899 from Kazakhstanian Cisurals and a new reconstruction of its tooth whorl position and function. Acta Zoologica, 90:171182.CrossRefGoogle Scholar
Logan, A. and McGugan, A. 1968. Biostratigraphy and faunas of the Permian Ishbel Group, Canadian Rocky Mountains. Journal of Paleontology, 42:11231139.Google Scholar
Lund, R. and Grogan, E. D. 1997. Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Reviews in Fish Biology and Fisheries, 7:65123.CrossRefGoogle Scholar
McGugan, A. and Rapson, J. E. 1963. Permo-Carboniferous stratigraphy between Banff and Jasper, Alberta. Bulletin of Canadian Petroleum Geology, 11:150160.Google Scholar
Müllerried, F. K. G. 1945. El edéstido Helicoprion, encontrado por primera vez en Mexico, en el estado de Coahuila. Ciencia Mexicana, 6:208212.Google Scholar
Nassichuk, W. W. 1971. Helicoprion and Physonemus, Permian vertebrates from the Assistance Formation, Canadian Arctic Archipelago. Geological Survey of Canada, Bulletin, 192:8393.Google Scholar
Nassichuk, W. W. and Spinosa, C. 1970. Helicoprion sp., a Permian elasmobranch from Ellesmere Island, Canadian Arctic. Journal of Paleontology, 44:11301132.Google Scholar
Nyberg, K. G., Ciampaglio, C. N., and Wray, G. A. 2006. Tracing the ancestry of the great white shark, Carcharodon carcharias, using morphometric analyses of fossil teeth. Journal of Vertebrate Paleontology, 26:806814.CrossRefGoogle Scholar
Obruchev, D. V. 1953. Edestid studies and the works by A. P. Karpinsky. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR, 45:185. (In Russian)Google Scholar
Obruchev, D. V. 1964. Subclass Holocephali, p. 238266. InOrlov, Y. A.(ed.), Holocephalans. Fundamentals of Palaeontology. Agnathans, Fishes, Nauka Publishers, Moscow.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41:4365.Google Scholar
Siedlecki, S. A. 1970. Helicoprion from the Permian of Spitsbergen. Årbok Norsk Polarinstitute, 1968:3654.Google Scholar
Silberling, N. J. 1973. Geologic events during Permian–Triassic time along the Pacific margin of the United States, p. 345362. InLogan, A. and Hills, L. V.(eds.), The Permian and Triassic Systems and Their Mutual Boundary. Canadian Society of Petroleum Geologists Memoir 2.Google Scholar
Sour-Tovar, F., Quiroz-Barroso, A. Q., and Applegate, S. P. 2000. Presence of Helicoprion (Chondrichthyes, Elasmobranchii) in the Permian Patlanoaya Formation, Puebla, Mexico. Journal of Paleontology, 74:363366.2.0.CO;2>CrossRefGoogle Scholar
Tapanila, L., Pruitt, J., Pradel, A., Wilga, C. D., Ramsay, J. B., Schlader, R., and Didier, D. A. 2013. Jaws for a spiral-tooth whorl: CT images reveal novel adaptation and phylogeny in fossil Helicoprion. Biology Letters, 9:20130057.CrossRefGoogle ScholarPubMed
Tchuvashov, B. I. 2001. Permian sharks of the family Helicoprionidae: stratigraphic and geographic distribution, ecology, a new member. Materialy po stratigrafii i palaeontologii Urala, 6:1227. (In Russian)Google Scholar
Teichert, C. 1940. Helicoprion in the Permian of Western Australia. Journal of Paleontology, 14:140149.Google Scholar
Vetz, N. Q. 2010. Geochronologic and isotopic investigation of the Koipato Formation, northwestern Great Basin, Nevada: implications for Late Permian–Early Triassic tectonics along the Western U.S. Cordillera. Unpublished MS thesis, Boise State University, 147p.Google Scholar
Wheeler, H. E. 1939. Helicoprion in the Anthracolithic of Nevada and California, and its stratigraphic significance. Journal of Paleontology, 13:103114.Google Scholar
Whitenack, L. B. and Gottfried, M. D. 2010. A morphometric approach for addressing tooth-based species delimitation in fossil mako sharks, Isurus (Elasmobranchii: Lamniformes). Journal of Vertebrate Paleontology, 30:1725.CrossRefGoogle Scholar
Williams, J. S. and Dunkle, D. H. 1948. Helicoprion-like fossils in the Phosphoria Formation. GSA Bulletin, 59:1362.Google Scholar
Woodward, H. 1886. On a remarkable ichthyodorulite from the Carboniferous series, Gascoyne, Western Australia. Geological Magazine, 3:17.CrossRefGoogle Scholar
Yabe, H. 1903. On a Fusulina-limestone with Helicoprion in Japan. Journal of the Geological Society of Tokyo, 10:113.Google Scholar
Yochelson, E. L. 1968. Biostratigraphy of the Phosphoria, Park City, and Shedhorn Formations. USGS Professional Paper, 313-D:571660.Google Scholar
Zangerl, R. 1981. Chondrichthyes I. Paleozoic Elasmobranchii. Handbook of Paleoichthyology, vol. 3A, Gustav Fischer, New York, 113p.Google Scholar
Supplementary material: File

Tapanila and Pruitt supplementary material

Tapanila and Pruitt supplementary material
Download Tapanila and Pruitt supplementary material(File)
File 30.4 KB
Supplementary material: PDF

Tapanila and Pruitt supplementary material

Supplementary Table S2
Download Tapanila and Pruitt supplementary material(PDF)
PDF 145.4 KB