Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T03:17:01.774Z Has data issue: false hasContentIssue false

Stratocladistic analysis of blastoid phylogeny

Published online by Cambridge University Press:  14 July 2015

Brian E. Bodenbender
Affiliation:
Department of Geological and Environmental Sciences, Hope College, Holland, Michigan 49422-9000,
Daniel C. Fisher
Affiliation:
Museum of Paleontology and Department of Geological Sciences, University of Michigan, Ann Arbor 48109-1079,

Abstract

Stratocladistics combines morphological and stratigraphic data in a parsimony-based analysis of evolutionary relationships. We use stratocladistics here to provide an overview of the phylogeny of the extinct echinoderm class Blastoidea. Both cladistic and stratocladistic methods evaluate alternative phylogenies by comparing the number of ad hoc hypotheses needed to reconcile each alternative to observed data. Minimization of ad hoc hypotheses selects the phylogeny best supported by data and enables phylogenetic analyses to incorporate data from different sources. Cladistics treats ad hoc hypotheses of homoplasy, whereas stratocladistics additionally considers ad hoc hypotheses of differential preservation probability of lineages in the stratigraphic record.

The blastoid phylogeny derived using stratocladistics is more resolved than hypotheses selected by cladistics. Although the morphological characters are relatively homoplasious, in this instance the stratigraphic ordering of fossils provides both structure and altered polarity for the stratocladistic hypothesis. The stratocladistic phylogeny supports previous paleontological conclusions of convergence among blastoid lineages and facilitates evaluation of specific hypotheses of character transformation that are integral to recent systematic revisions. Additionally, consideration of temporal data makes some hypotheses of ancestor-descendant relationships more parsimonious than hypotheses of derivation from a common ancestor. The ability to recognize sequential members within single lineages allows more accurate estimation of faunal diversities and more specific reconstruction of evolutionary histories. Chief among possible confounding factors in stratocladistics are instances where preservation potential shows significant geographic variation, although problems of preservation are more tractable than the difficulties homoplasy presents for cladistic analysis.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AAPG. 1985a. COSUNA—Midwestern Basin and Arches Region correlation chart. R. H. Shaver, coordinator.Google Scholar
AAPG. 1985b. COSUNA—Northern Appalachian Region correlation chart. D. G. Patchen, K. L. Avary, and R. B. Erwin, coordinators.Google Scholar
AAPG. 1985c. COSUNA—Southern Appalachian Region correlation chart. D. G. Patchen, K. L. Avary, and R. B. Erwin, coordinators.Google Scholar
AAPG. 1987. COSUNA—Mid-Continent Region correlation chart. F. J. Adler, coordinator.Google Scholar
Ausich, W. I., and Meyer., D. L. 1988. Blastoids from the late Osagean Fort Payne Formation (Kentucky and Tennessee). Journal of Paleontology, 62:269283.CrossRefGoogle Scholar
Bodenbender, B. E. 1995. Morphological, crystallographic, and stratigraphic data in cladistic analyses of blastoid phylogeny. Contributions from the Museum of Paleontology, The University of Michigan, 29:201257.Google Scholar
Bother, D. J., and Jablonski., D. 1988. Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios, 3:540560.Google Scholar
Breimer, A. 1988. The anatomy of the spiraculate blastoids; Part I: the family Troosticrinidae. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series B, 91:113.Google Scholar
Breimer, A., and Macurda, D. B. Jr. 1972. The phylogeny of the fissiculate blastoids. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling Natuurkunde, Eerste Reeks, 26(3):1390.Google Scholar
Bretsky, S. S. 1979. Recognition of ancestor-descendant relationships in invertebrate paleontology, p. 113163. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Childs, O. E. 1985. Correlation of stratigraphic units of North America—COSUNA. American Association of Petroleum Geologists Bulletin, 69:173180.Google Scholar
Clyde, W. C., and Fisher., D. C. 1997. Comparing the fit of stratigraphic and morphologic data in phylogenetic analysis. Paleobiology, 23:119.CrossRefGoogle Scholar
Cracraft, J. 1979. Phylogenetic analysis, evolutionary models, and paleontology, p. 739. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Eernisse, D. J., and Kluge, A. G. 1993. Taxonomic congruence versus total evidence, and the phylogeny of amniotes inferred from fossils, molecules and morphology. Molecular Biology and Evolution, 10:11701195.Google ScholarPubMed
Eldredge, N. 1979. Cladism and common sense, p. 165198. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Farris, J. S. 1983. The logical basis of phylogenetic analysis, p. 736. In Platnick, N. I. and Funk, V. A. (eds.), Advances in Cladistics, Volume 2. Columbia University Press, New York.Google Scholar
Fay, R. O. 1961. Blastoid Studies. The University of Kansas Paleontological Contributions, Echinodermata, Article 3, 147 p.Google Scholar
Fay, R. O. 1967. Phylogeny and evolution, p. S392S396. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, P. S, Echinodermata 1. Geological Society of America and University of Kansas Press, Boulder, Colorado and Lawrence, Kansas.Google Scholar
Fisher, D. C. 1980. The role of stratigraphic data in phylogenetic inference. Geological Society of America Abstracts with Programs, 12(7):426.Google Scholar
Fisher, D. C. 1982. Phylogenetic and macroevolutionary patterns within the Xiphosurida. Third North American Paleontological Convention Proceedings, 1:175180.Google Scholar
Fisher, D. C. 1984. The Xiphosurida: archetypes of bradytely?, p. 196213. In Eldredge, N. and Stanley, S. M. (eds.), Living Fossils. Springer Verlag, New York.CrossRefGoogle Scholar
Fisher, D. C. 1988. Stratocladistics: integrating stratigraphic and morphologic data in phylogenetic inference. Geological Society of America Abstracts with Programs, 20(7):A186.Google Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its application in evolutionary biology, p. 103122. In Gilinsky, N. L. and Signor, P. W. (eds.), Analytical Paleobiology Short Courses in Paleontology 4. Paleontological Society, Knoxville, Tennessee.Google Scholar
Fisher, D. C. 1992. Stratigraphic parsimony, p. 124129. In Maddison, W. P. and Maddison, D. R. (eds.), MacClade: Analysis of Phylogeny and Character Evolution, Version 3.0. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Fisher, D. C. 1994a. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process, p. 133171. In Grande, L. and Rieppel, O. (eds.), Interpreting the Hierarchy of Nature. Academic Press, Inc., San Diego.Google Scholar
Fisher, D. C. 1994b. Measures of congruence between stratigraphic data and phylogenetic hypotheses. Geological Society of America Abstracts with Programs, 26(7):A123.Google Scholar
Fisher, D. C. 1998. Stratigraphic data and phylogenetic hypotheses. Nature [online] (c. 3, 17, and 24 Dec. 1998) <http://helix.nature.com/debates/fossil/fossil_10.html>; <… 18.html>; <… 24.html>.Google Scholar
Foote, M. 1991. Morphological and taxonomic diversity in a clade's history: the blastoid record and stochastic simulations. Contributions from the Museum of Paleontology, The University of Michigan, 28:101140.Google Scholar
Foote, M. 1996. On the probability of ancestors in the fossil record. Paleobiology, 22:141151.CrossRefGoogle Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoirs (Paleobiology, 25[2]Supplement), 115 p.Google Scholar
Foote, M., and Sepkoski, J. J. Jr. 1999. Absolute measures of the completeness of the fossil record. Nature, 398:415417.CrossRefGoogle ScholarPubMed
Fox, D. L., Fisher, D. C., and Leighton., L. R. 1999. Reconstructing phylogeny with and without temporal data. Science, 284:18161819.CrossRefGoogle ScholarPubMed
Geological Survey of Western Australia. 1990. Geology and mineral resources of Western Australia. Western Australia Geological Survey Memoir, 3, 827 p.Google Scholar
Gingerich, P. D. 1979. The stratophenetic approach to phylogeny reconstruction in vertebrate paleontology, p. 4177. In Cracraft, J. and Eldredge, N. (eds.), Phylogenetic Analysis and Paleontology. Columbia University Press, New York.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith., D. G. 1990. A Geologic Time Scale 1989. Cambridge University Press, Cambridge, 263 p.Google Scholar
Horowitz, A. S., Macurda, D. B. Jr., and Waters., J. A. 1986. Polyphyly in the Pentremitidae (Blastoidea, Echinodermata). Geological Society of America Bulletin, 97:156161.2.0.CO;2>CrossRefGoogle Scholar
Huelsenbeck, J. P. 1994. Comparing the stratigraphic record to estimates of phylogeny. Paleobiology, 20:470483.CrossRefGoogle Scholar
Huelsenbeck, J. P., and Rannala., B. 1997. Maximum likelihood estimation of topology and node times using stratigraphic data. Paleobiology, 23:174180.CrossRefGoogle Scholar
Jell, P. A. 1983. Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea). Memoir of the Association of Australasian Palaeontologists, 1:209235.Google Scholar
Kluge, A. J. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Zoology, 38:725.CrossRefGoogle Scholar
Lane, N. G., Waters, J. A., and Maples., C. G. 1997. Echinoderm faunas of the Hongguleleng Formation, Late Devonian (Famennian), Xinjiang-Uygur Autonomous Region, People's Republic of China. Paleontological Society Memoir 47 (Journal of Paleontology, 71 [2]Supplement), 43 p.Google Scholar
Macurda, D. B. Jr. 1983. Systematics of the fissiculate Blastoidea. Papers on Paleontology the Museum of Paleontology University of Michigan, Number 22, 291 p.Google Scholar
Maddison, D. R. 1991. The discovery and importance of multiple islands of most-parsimonious trees. Systematic Zoology, 40:315328.CrossRefGoogle Scholar
Maddison, W. P., and Maddison., D. R. 1992. MacClade: Analysis of Phylogeny and Character Evolution, Version 3.0. Sinauer Associates, Sunderland, Massachusetts, 398 p.Google Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology, 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1994. Confidence intervals on stratigraphic ranges: partial relaxation of the assumption of randomly distributed fossil horizons. Paleobiology, 20:459469.CrossRefGoogle Scholar
McCabe, R., and Cole., J. 1989. Speculations on the late Mesozoic and Cenozoic evolution of the Southeast Asian margin, p. 143160. In Ben-Avraham, Z. (ed.), The Evolution of the Pacific Ocean Margins. Oxford Monographs on Geology and Geophysics, Number 8. Oxford University Press, New York.Google Scholar
Nelson, G., and Platnick., N. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.Google Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny, p. 89118. In Novacek, M. J. and Wheeler, Q. D. (eds.), Extinction and Phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science, 293-A:407417.CrossRefGoogle Scholar
Olson, E. C., and Miller., R. L. 1958. Morphological Integration. University of Chicago Press, Chicago, 317 p.Google Scholar
Polly, P. D. 1997. Ancestry and species definition in paleontology: a stratocladistic analysis of Paleocene-Eocene Viverravidae (Mammalia, Carnivora) from Wyoming. Contributions, Museum of Paleontology, University of Michigan, 30(1):153.Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science, 177:10651071.CrossRefGoogle ScholarPubMed
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology, 2:289297.CrossRefGoogle Scholar
Sabattini, N., and Castillo., E. 1989. Equinodermo blastoideo en el Carbonifero de las Sierras de Tepuel y Languiñeo, Provincia de Chubut (Argentina). Ameghiniana, 26:219224.Google Scholar
Schaeffer, B., Hecht, M. K., and Eldredge., N. 1972. Phylogeny and paleontology. Evolutionary Biology, 6:3246.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology, 31:799828.Google Scholar
Smith, A. B. 1994. Systematics and the Fossil Record. Blackwell Scientific Publications, Oxford, 223 p.CrossRefGoogle Scholar
Sprinkle, J., and Gutschick., R. C. 1990. Early Mississippian blastoids from western Montana. Bulletin of the Museum of Comparative Zoology, 152:89166.Google Scholar
Steno, N. 1669. De solido intra solidum naturaliter contento, dissertationis prodromus. Ex typographia sub signo Stellae, Florence, 76 p.CrossRefGoogle Scholar
Suter, S. J. 1993. Stratigraphic ranges as a basis for choosing among equally parsimonious phytogenies: the case of cassiduloid echinoids. Geological Society of America Abstracts with Programs, 25(6):A105.Google Scholar
Suter, S. J. 1994. Cladistic analysis of cassiduloid echinoids: trying to see the phylogeny for the trees. Biological Journal of the Linnean Society, 53:3172.CrossRefGoogle Scholar
Swofford, D. L. 1991. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
Thewissen, J. G. M. 1992. Temporal data in phylogenetic systematics: an example from the mammalian fossil record. Journal of Paleontology, 66:17.CrossRefGoogle Scholar
Wagner, P. J. 1995. Stratigraphic tests of cladistic hypotheses. Paleobiology, 21:153178.CrossRefGoogle Scholar
Wagner, P. J. 1998. A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology, 24:430449.CrossRefGoogle Scholar
Waters, J. A. 1988. The evolutionary palaeoecology of the Blastoidea, p. 215233. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Waters, J. A. 1990. The palaeobiogeography of the Blastoidea (Echinodermata), p. 339352. In McKerrow, W. S. and Scotese, C. R. (eds.), Palaeozoic Palaeogeography and Biogeography. Geological Society Memoir, 12.Google Scholar
Waters, J. A., and Horowitz., A. S. 1993. Ordinal-level evolution in the Blastoidea. Lethaia, 26:207213.CrossRefGoogle Scholar
Webster, G. D. 1973. Bibliography and Index of Paleozoic Crinoids 1942-1968. Geological Society of America Memoir, 137, 341 p.Google Scholar
Webster, G. D. 1977. Bibliography and Index of Paleozoic Crinoids 1969-1973. Geological Society of America Microform Publication, 8, 235 p.Google Scholar
Webster, G. D. 1986. Bibliography and Index of Paleozoic Crinoids 1974-1980. Geological Society of America Microform Publication, 16, 405 p.Google Scholar
Webster, G. D. 1988. Bibliography and Index of Paleozoic Crinoids 1981-1985. Geological Society of America Microform Publication, 18, 235 p.Google Scholar
Webster, G. D. 1998. Distortion in the stratigraphy and biostratigraphy of Timor, a historical review with an analysis of the crinoid and blastoid faunas. Proceedings of the Royal Society of Victoria, 110:4571.Google Scholar