Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-20T17:20:04.890Z Has data issue: false hasContentIssue false

Palynology of the Ordovician Kanosh Shale at Fossil Mountain, Utah

Published online by Cambridge University Press:  01 October 2015

Marco Vecoli
Affiliation:
Université Lille 1, UMR 8217 CNRS, Cité Scientifique, Villeneuve d’Ascq, 59655, France Current address: Biostratigraphy Group, Geological Technical Service Division, Saudi Aramco, Dhahran, 31311, Saudi Arabia 〈[email protected]
John H. Beck
Affiliation:
Department of Earth and Environmental Sciences, Weston Observatory of Boston College, 381 Concord Road, Weston, Massachusetts 02493, USA 〈[email protected]〉, 〈[email protected]
Paul K. Strother
Affiliation:
Université Lille 1, UMR 8217 CNRS, Cité Scientifique, Villeneuve d’Ascq, 59655, France Department of Earth and Environmental Sciences, Weston Observatory of Boston College, 381 Concord Road, Weston, Massachusetts 02493, USA 〈[email protected]〉, 〈[email protected]

Abstract

Palynomorph assemblages recovered from the Kanosh Shale at Fossil Mountain, Utah, are dominated by operculate acritarchs and cryptospores with minor smaller acritarchs. The present findings add new data to the largely incomplete knowledge of Ordovician acritarch assemblages from Laurentia, up to now known only from very few localities in North America. These populations contain some species in common with acritarchs from the Canning and Georgina basins in Australia and with assemblages from China; they indicate a Middle Ordovician (Dapingian-Darriwilian) age. The assemblage is lacking many typical marine acritarchs of this age, which, in combination with some cryptospores, is probably reflecting the likelihood of freshwater influence in the Kanosh Basin. This observation is congruent with previous interpretations of the depositional setting of the Kanosh Shale as a shallow water lagoon that supported the deposition of carbonate hardgrounds.

Four new taxa are described: Busphaeridium vermiculatum n. gen., n. sp.; Digitoglomus minutum n. gen., n. sp.; Turpisphaera heteromorpha n. gen., n. sp.; and Vermimarginata barbata n. gen., n. sp. In addition, the abundance of operculate forms has enabled the revision and a new emendation of the genus Dicommopalla and clarification of the “opalla” complex. We also propose new and revised suprageneric taxa that emphasize inferred biological differences among acritarch genera. The Sphaeromorphitae subgroup is emended to include forms lacking sculptural elements. Two new informal subgroups are proposed: the Superornamenti and the Operculate Acritarchs. Cryptospores are abundant throughout the sections studied and they appear to be more closely related to the late Cambrian Agamachates Taylor and Strother than to Darriwilian and younger Ordovician cryptospores from Gondwana.

Type
Articles
Copyright
Copyright © 2015, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., Mccourt, R.M., Mendoza, L., Moestrup, O., Mozley-Standridge, S.E., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W., and Taylor, M.F.J.R., 2005, The new higher level classification of eukaryotes with emphasis on the taxonomy of protists: The Journal of Eukaryotic Microbiology, v. 52, p. 399451.CrossRefGoogle ScholarPubMed
Achab, A., 1976, Les acritarches de la Formation d’Awantjis (Llandovérien supérieur) du sondage Val Brillant, Vallée de Matapédia, Québec: Canadian Journal of Earth Sciences, v. 13, p. 13101318.CrossRefGoogle Scholar
Al-Ameri, T.K., 1983, Acid-resistant microfossils used in the determination of Palaeozoic palaeoenvironments in Libya: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 44, p. 103116.CrossRefGoogle Scholar
Albani, R., Massa, D., and Tongiorgi, M., 1991, Palynostratigraphy (acritarchs) of some Cambrian beds from the Rhadames (Ghadamis) Basin (western Libya-southern Tunisia): Bollettino della Societá Paleontologica Italiana, v. 30, p. 255280.Google Scholar
Bergström, S.M., Chen, X., Gutierrez-Marco, J.C., and Dronov, A., 2009, The new chronostratigraphic classification of the Ordovician System and its relations to major regional series and stages and to δ 13C chemostratigraphy. Lethaia, v. 42, p. 97107.Google Scholar
Boyer, D.L., and Droser, M.L., 2003, Shell beds of the Kanosh and Lehman formations of western Utah: Paleoecological and paleoenvironmental interpretations: Brigham Young University Geology Studies, v. 47, p. 116.Google Scholar
Braithwaite, L.F., 1976, Graptolites from the Lower Ordovician Pogonip Group of Western Utah: Geological Society of America Special Paper, v. 166, 106 p.CrossRefGoogle Scholar
Brocke, R., 1997, Evaluation of the Ordovician acritarch genus Ampullula Righi: Annales de la Société géologique du Belgique, v. 120, p. 7397.Google Scholar
Brocke, R., Fatka, O., Molyneux, S.G., and Servais, T., 1995, First appearance of selected early Ordovician acritarch taxa from Peri-Gondwana, in Cooper, J.D., Droser, M.L., and Finney, S.C., eds., Ordovician Odyssey: short papers for the Seventh International Symposium on the Ordovician System: The Pacific Section for Sedimentary Geology (SEPM), Fullerton, p. 473476.Google Scholar
Brocke, R., Li, J., and Wang, Y., 2000, Upper Arenigian to lower Llanvirnian acritarch assemblages from South China: a preliminary evaluation: Review of Palaeobotany and Palynology, v. 113, p. 2740.CrossRefGoogle ScholarPubMed
Bunner, W.D., and Legault, J.A., 1989, A new species of Dicommopalla (acritarcha) from the middle Ordovician Simcoe group of southern Ontario, Canada: Palynology, v. 13, p. 5762.Google Scholar
Burmann, G., 1970, Weitere organische Mikrofossilien aus dem unteren Ordovizium: Paläontologische Abhandlungen Abt. B, v. 3, p. 289332.Google Scholar
Cohen, P.A., Knoll, A.H., and Kodner, R.B., 2009, Large spinose microfossils in Ediacaran rocks as resting stages of early animals: Proceedings of the National Academy of Sciences, v. 106, p. 65196524.CrossRefGoogle ScholarPubMed
Colbath, G.K., 1990, Palaeobiogeography of Middle Palaeozoic organic-walled phytoplankton, in McKerrow, W.S., and Scotese, C.R., eds., Palaeozoic palaeogeography and biogeography: Geological Society Memoir, v. 12, p. 207213.Google Scholar
Colbath, G.K., and Grenfell, H.R., 1995, Review of biological affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”): Review of Palaeobotany and Palynology, v. 86, p. 287314.CrossRefGoogle Scholar
Combaz, A., and Peniguel, G., 1972, Étude palynostratigraphique de l’Ordovicien dans quelques sondages du Bassin de Canning (Australie Occidentale): Bulletin du Centre de Recherches de Pau, Société Nationale des Pétroles d’Aquitaine, v. 6, p. 121167.Google Scholar
Cramer, F.H., 1968, Palynologic microfossils of the Middle Silurian Maplewood Shale in New York: Revue de Micropaléontologie, v. 11, p. 6170.Google Scholar
Deflandre, G., 1937, Microfossiles des silex crétacés, Deuxième partie, Flagellés incertae sedis, Hystrichosphaeridés, Sarcodinés, Organismes divers: Annales de Paléontologie, v. 26, p. 51103.Google Scholar
Deflandre, G., 1945, Microfossiles des calcaires siluriens de la Montagne Noire: Annales de Paléontologie, v. 31, p. 4175.Google Scholar
Deunff, J., 1961, Un microplancton à Hystricosphères dans le Trémadoc du Sahara: Revue de Micropaléontologie, v. 4, p. 3752.Google Scholar
Downie, C., 1963, “Hystrichospheres” (acritarchs) and spores of the Wenlock Shales (Silurian) of Wenlock, England: Palaeontology, v. 6, p. 625652.Google Scholar
Downie, C., 1982, Lower Cambrian acritarchs from Scotland, Norway, Greenland, and Canada: Transaction of the Royal Society of Edinburgh, Earth Sciences, v. 72, p. 257282.Google Scholar
Downie, C., 1984, Acritarchs in British stratigraphy: Geological Society of London Special Report, no. 17, 26 p.Google Scholar
Downie, C., Evitt, W.R., and Sarjeant, W., 1963, Dinoflagellates, hystrichospheres, and the classification of the acritarchs: Stanford University Publications, Geological Sciences, v. 7, p. 116.Google Scholar
Eisenack, A., 1955, Chitinozoen, Hystrichosphären und andere Mikrofossilien aus dem Beyrichia-Kalk: Senckenbergiana Lethaea, v. 36, p. 157188.Google Scholar
Eisenack, A., 1958, Tasmanites Newton1875 und Leiosphaeridia n. g. als Gattungen der Hystrichosphaeridea. Palaeontographica, Abt. A, v. 110, p. 119.Google Scholar
Eley, B.E., and Legault, J.A., 1992, Acritarchs from the Fossil Hill Formation (Silurian) of southern Ontario, Canada: Palynology, v. 16, p. 7392.CrossRefGoogle Scholar
Ethington, R.L., and Clark, D.L., 1981, Lower and Middle Ordovician conodonts from the Ibex area, western Millard County, Utah: Department of Geology, Brigham Young University, Geological Studies, v. 28, p. 1155.Google Scholar
Evitt, W.R., 1963, A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs, I: PNAS, v. 49, p. 158164.CrossRefGoogle Scholar
Forester, J.W., 1973, The fate of freshwater algae entering an estuary, in Stevenson, L.H., and Colwell, R.R., eds., Estuarine Microbial Ecology: Columbia, University of South Carolina Press, p. 387420.Google Scholar
Gao, L.D., 1986, Late Devonian and Early Carboniferous acritarchs from Nyalam County, Xizang (Tibet), China: Review of Palaeobotany and Palynology, v. 47, p. 1730.Google Scholar
Ghelsthorpe, D.N., 2004, Microplankton changes through the early Silurian Ireviken extinction event on Gotland, Sweden: Review of Palaeobotany and Palynology, v. 130, p. 89103.CrossRefGoogle Scholar
Guy-Ohlson, D., 1996, Prasinophycean algae, in Jansonius, J., and McGregor, D.C., eds., Palynology: Principles and Applications, vol. 1: Houston, American Association of Stratigraphic Palynologist Foundation, p. 181190.Google Scholar
Hintze, L.F., 1951, Lower Ordovician detailed stratigraphic sections for western Utah: Utah Geological and Mineralogical Survey Bulletin, v. 39, 99 p.Google Scholar
Hintze, L.F., 1952, Lower Ordovician trilobites from western Utah and eastern Nevada: Utah Geological and Mineralogical Survey Bulletin, v. 48, 249 p.Google Scholar
Hintze, L.F., 1973, Lower and Middle Ordovician stratigraphic sections in the Ibex Area, Millard County, Utah: Brigham Young University Geology Studies, v. 20, p. 336.Google Scholar
Hogg, J., 1860, On the distinctions of a plant and an animal, and on a fourth kingdom of nature: Edinburgh New Philosophical Journal, v. 12, p. 216225.Google Scholar
Jacobson, S.R., 1978, Acritarchs from the Upper Ordovician Clays Ferry Formation, Kentucky, U.S.A.: Palinologia, Numero Extraordinario, v. 1, p. 293301.Google Scholar
Jacobson, S.R., and Achab, A., 1985, Acritarch biostratigraphy of the Dicellograptus complanatus graptolite Zone from the Vaureal Formation (Ashgillian), Anticosti Island, Quebec, Canada: Palynology, v. 9, p. 165198.CrossRefGoogle Scholar
Jankauskas, T.V., 1989, Precambrian microfossils of the USSR: Leningrad, Nauka, 188 p. [in Russian]Google Scholar
Karol, K.G., McCourt, R.M., Cimino, M.T., and Delwiche, C.F., 2001, The closest living relatives of land plants: Science, v. 294, p. 23512353.CrossRefGoogle ScholarPubMed
Knoll, A.H., Javaux, E.J., Hewitt, D., and Cohen, P., 2006, Eukaryotic organisms in Proterozoic oceans: Philosophical Transactions of the Royal Society B, Biological Sciences, v. 361, p. 10231038.CrossRefGoogle ScholarPubMed
Legault, J.A., 1982, First report of Ordovician (Caradoc-Ashgill) palynomorphs from Orphan Knoll, Labrador Sea: Canadian Journal of Earth Sciences, v. l9, p. 18511856.CrossRefGoogle Scholar
Lei, Y., Servais, T., Feng, Q., and He, W., 2013, Latest Permian acritarchs from South China and the Micrhystridium/Veryhachium complex revisited: Palynology, v. 37, p. 325344.CrossRefGoogle Scholar
Lewis, L.A., and McCourt, R.M., 2004, Green algae and the origin of land plants: American Journal of Botany, v. 91, p. 15351556.CrossRefGoogle ScholarPubMed
Li, J., 1987, Ordovician acritarchs from the Meitan Formation of Guizhou Province, south-west China: Palaeontology, v. 30, p. 613634.Google Scholar
Li, J., Servais, T., and Brocke, R., 2002, Chinese Palaeozoic acritarch research: reviews and perspectives: Review of Palaeobotany and Palynology, v. 118, p. 181193.CrossRefGoogle Scholar
Lister, T.R., 1970, A monograph of the acritarchs and chitinozoa from the Wenlock and Ludlow Series of the Ludlow and Millichope areas, Shropshire, part I: Palaeontological Society Monograph, no. 528, 100 p.CrossRefGoogle Scholar
Loeblich, A.R. Jr., 1970a, Dicommopalla,a new acritarch genus from the Dillsboro Formation (Upper Ordovician) of Indiana, U.S.A.: Phycologia, v. 9, p. 3943.Google Scholar
Loeblich, A.R. Jr., 1970b, Morphology, ultrastructure and distribution of Paleozoic acritarchs: Proceedings of the North American Paleontological Convention, Chicago, September 1969, Part G, p. 705–788.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1969, Acritarch excystment and surface ultrastructure with descriptions of some Ordovician taxa: Revista Española de Micropaleontología, v. 1, p. 4557.Google Scholar
Loeblich, A.R. Jr., and Tappan, H., 1978, Some Middle and Late Ordovician microphytoplankton from central North America: Journal of Paleontology, v. 52, p. 12331287.Google Scholar
Magloire, L., 1967, Etude stratigraphique, par la palynologie, des dépôts argilogréseux du Silurien et du Dévonien inférieur, dans la région du Grand Erg Occidental (Sahara algérien): International Symposium on the Devonian System, Calgary, v. 2, p. 473492.Google Scholar
Marenco, P.J., Marenco, K.N., Lubitz, R.L., and Niu, D., 2013, Contrasting long-term global and short-term local redox proxies during the Great Ordovician Biodiversification Event: a case study from Fossil Mountain, Utah, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 377, p. 4551.CrossRefGoogle Scholar
Markello, J.R., and Read, J.F., 1981, Carbonate ramp-to-deeper shale shelf transitions of an Upper Cambrian intrashelf basin, Nolichucky Formation, Southwest Virginia Appalachians: Sedimentology, v. 28, p. 573597.Google Scholar
Martin, F., 1966, Les acritarches de Sart-Bernard (Ordovicien Belge): Bulletin de la Société Belge de Géologie, Paléontologie et Hydrologie, v. 74, p. 423444.Google Scholar
Martin, F., 1992, Uppermost Cambrian and lower Ordovician acritarchs and lower Ordovician chitinozoans from Wilcox Pass, Alberta: Geological Survey of Canada Bulletin, v. 420, p. 157.Google Scholar
Martin, F., 1993, Acritarchs: a review: Biological Reviews, v. 68, p. 475538.CrossRefGoogle Scholar
Martin, F., 1996, Systematic revision of the acritarch Ferromia pellita and its bearing on the lower Ordovician stratigraphy: Review of Palaeobotany and Palynology, v. 93, p. 2334.CrossRefGoogle Scholar
Martin, F., and Yin, L.-M., 1988, Early Ordovician acritarchs from southern Jilin Province, north-east China: Palaeontology, v. 31, p. 109127.Google Scholar
Mays, C.M., and Stilwell, J.D., 2012, Judging an acritarch by its cover: the taxonomic implications of Introvertocystis rangiaotea gen. et sp. nov. from the Late Cretaceous (Cenomanian-Turonian) of the Chatham Islands, New Zealand: Palynology, v. 36, p. 180190.Google Scholar
Migula, W., 1897, Die Characeen Deutschlands, Oesterrichs und der Schweiz, in Rabenhorst, L., ed., Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz, 2nd ed., v. 5: Leipzig, E. Kummer, p. 1766.Google Scholar
Miller, M.A., 1991, Paniculaferum missouriensis gen et sp. nov., a new Upper Ordovician acritarch from Missouri, U.S.A.: Review of Palaeobotany and Palynology, v. 70, p. 217223.CrossRefGoogle Scholar
Moczydłowska, M., 1991, Acritarch biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian boundary in southeastern Poland: Fossils and Strata, v. 29, p. 1127.CrossRefGoogle Scholar
Moczydłowska, M., and Vidal, G., 1986, Lower Cambrian acritarch zonation in southern Scandinavia and southeastern Poland: Geologiska Föreningens i Stockholm Förhandlingar, v. 108, p. 201223.CrossRefGoogle Scholar
Molyneux, S.G., Barron, H.F., and Smith, R.A., 2008, Upper Llandovery-Wenlock (Silurian) palynology of the Pentland Hills inliers, Midland Valley of Scotland: Scottish Journal of Geology, v. 44, p. 151168.CrossRefGoogle Scholar
Moreau-Benoît, A., 1984, Acritarches et chitinozoaires du Dévonien moyen et supérieur de Libye occidentale: Review of Palaeobotany and Palynology, v. 43, p. 187216.CrossRefGoogle Scholar
Muller, J., 1959, Palynology of Recent Orinoco delta and shelf sediments: Micropaleontology, v. 5, p. 132.CrossRefGoogle Scholar
Mullins, G.L., Aldridge, R.J., and Siveter, D.J., 2004, Microplankton associations, biofacies and palaeoenvironment of the type lower Ludlow Series, Silurian: Review of Palaeobotany and Palynology, v. 130, p. 163194.CrossRefGoogle Scholar
Naumova, S.N., 1961, Spore-pollen complexes of the Riphean and Lower Cambrian in the SSSR: Mezhdunarodny Geologischeskii Kongress, 21 sessiya, v. 1960, p. 109117. [in Russian]Google Scholar
Pascher, A., 1914, Ueber Flagellaten und Algen. Berichte der deutschen botanischen Gesellschaft, v. 32, p. 136160.Google Scholar
Playford, G., and Martin, F., 1984, Ordovician acritarchs from the Canning Basin, Western Australia: Alcheringa, v. 8, p. 187223.CrossRefGoogle Scholar
Playford, G., and Wicander, R., 1988, Acritarch palynoflora of the Coolibah Formation (Lower Ordovician), Georgina Basin, Queensland, in Jell, P.A., and Playford, G., eds., Palynological and Palaeobotanical Studies in Honour of Basil E. Balme: Association of Australasian Palaeontologists Memoir, v. 5, p. 540.Google Scholar
Playford, G., Ribecai, C., and Tongiorgi, M., 1995, Ordovician acritarch genera Peteinosphaeridium, Liliosphaeridium, and Cycloposphaeridium: morphology, taxonomy, biostratigraphy, and palaeogeographic significance. Bollettino della Società Paleontologica Italiana, v. 34, p. 354.Google Scholar
Porter, S.M., 2006, The Proterozoic fossil record of heterotrophic eukaryotes, in Xiao, S., ed., Neoproterozoic geobiology and paleobiology, Topics in Geobiology, v. 27: Dordrecht, Springer Netherlands, p. 121.CrossRefGoogle Scholar
Quintavalle, M., and Playford, G., 2006, Palynostratigraphy of Ordovician strata, Canning Basin, Western Australia, part one: Acritarchs and Prasinophytes: Palaeontographica Abteilung B., v. 275, p. 188.Google Scholar
Quintavalle, M., and Playford, G., 2008, Stratigraphic distribution of selected acritarchs in the Ordovician subsurface, Canning Basin, Western Australia: Revue de Micropaléontologie, v. 51, p. 2337.Google Scholar
Raevskaya, E., 1999, Early Arenig acritarchs from the Leetse Formation (St. Petersburg region, northwest Russia) and their palaogeographic significance, in Tongiorgi, M., and Playford, G., eds., Studies in Palaeozoic palynology, selected paper from the CIMP Symposium at Pisa, 1998: Bollettino della Società Paleontologica Italiana, v. 38, p. 247256.Google Scholar
Raevskaya, E., Vecoli, M., Bednarczyck, W., and Tongiorgi, M., 2004, Billingen (Lower Arenig/Lower Ordovician) acritarchs from the Eastern European Platform and their palaeobiogeographic significance: Lethaia, v. 37, p. 97111.CrossRefGoogle Scholar
Rasul, S.M., 1974, The Lower Palaeozoic acritarchs Priscogalea and Cymatiogalea: Palaeontology, v. 17, p. 4163.Google Scholar
Ribecai, C., and Tongiorgi, M., 1995, Arenigian acritarchs from Horns Hudde (Öland, Sweden): a preliminary report: Review of Palaeobotany and Palynology, v. 86, p. 111.CrossRefGoogle Scholar
Ribecai, C., and Tongiorgi, M., 1999, The Ordovician acritarch genus Pachysphaeridium Burmann, 1970: new, revised, and reassigned species: Palaeontographia Italica, v. 86, p. 117153.Google Scholar
Ribecai, C., Raevskaya, E., and Tongiorgi, M., 2002, Sacculidium gen. nov. (Acritarcha), a new representative of the Ordovician Stelomorpha-Tranvikium plexus: Review of Palaeobotany and Palynology, v. 121, p. 163203.CrossRefGoogle Scholar
Richardson, J.B., Ford, J.H., and Parker, F., 1984, Miospores, correlation and age of some Scottish Lower Old Red Sandstone sediments from the Strathmore region (Fife and Angus): Journal of Micropalaeontology, v. 3, p. 109124.CrossRefGoogle Scholar
Ross, R.J., 1949, Stratigraphy and trilobite faunal zones of the Garden City Formation, northeastern Utah: American Journal of Science, v. 7, p. 472491.CrossRefGoogle Scholar
Ross, R.J.J., and James, N.P., 1987, Brachiopod biostratigraphy of the Middle Ordovician Cow Head and Table Head groups, western Newfoundland: Canadian Journal of Earth Sciences, v. 24, p. 7095.CrossRefGoogle Scholar
Ross, R.J. Jr., James, N.P., Hintze, L.F., and Poole, F.G., 1989, Architecture and Evolution of a Whiterockian (Early Middle Ordovician) Carbonate Platform, Basin Ranges of Western U.S.A., in Crevello, P.D., Wilson, J.L., Sarg, J.F., and Read, J.F. Controls on carbonate platform and basin development: SEPM Special Publication, v. 44, p. 167185.CrossRefGoogle Scholar
Rubinstein, C.V., Toro, B.A., and Waisfeld, B.G., 1999, Acritarch biostratigraphy of the upper Tremadoc-Arenig of the Eastern Cordillera, northwestern Argentina: relationship with graptolite and trilobite faunas, in Tongiorgi, M., and Playford, G., eds., Studies in Palaeozoic palynology. Selected paper from the CIMP Symposium at Pisa, 1998: Bollettino della Società Paleontologica Italiana, v. 38, p. 267286.Google Scholar
Rubinstein, C.V., Vecoli, M., and Astini, R., 2011, Biostratigraphy and paleoenvironmental characterization of the Middle Ordovician from the Sierras Subandinas (NW Argentina) based on organic-walledmicrofossils and sequence stratigraphy: Journal of South American Earth Sciences, v. 31, p. 124138.CrossRefGoogle Scholar
Schaarschimdt, F., 1963, Sporen und Hystricosphaerideen aus dem Zechstein von Büdingen in der Wetterau: Palaeontographica Abteilung B. v. 113, p. 3891.Google Scholar
Servais, T., and Eiserhardt, K.H., 1995, A discussion and proposal concerning the Lower Palaeozoic “galeate” acritarch plexus: Palynology, v. 19, p. 191210.CrossRefGoogle Scholar
Servais, T., Li, J., Molyneux, S.G., and Raevskaya, E., 2003, Ordovician organic-walled microphytoplankton (acritarchs) distribution: the global scenario: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 195, p. 149172.CrossRefGoogle Scholar
Servais, T., Stricanne, L., Montenari, M., and Pross, J., 2004, Population dynamics of galeate acritarchs at the Cambrian-Ordovician transition in the Algerian Sahara: Palaeontology, v. 47, p. 395414.CrossRefGoogle Scholar
Servais, T., Li, J., Stricanne, L., Vecoli, M., and Wicander, R., 2004, Acritarchs, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 348360.CrossRefGoogle Scholar
Servais, T., Li, J., Molyneux, S.G., and Vecoli, M., 2008, The Ordovician acritarch genus Coryphidium: Revue de Micropaléontologie, v. 51, p. 97120.CrossRefGoogle Scholar
Staplin, F.L., 1961, Reef-controlled distribution of Devonian microplankton in Alberta: Palaeontology, v. 4, p. 392424.Google Scholar
Staplin, F.L., Jansonius, J., and Pocock, S.A J., 1965, Evaluation of some acritarchous hystrichosphere genera: Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, v. 123, p. 167201.Google Scholar
Stockmans, F., and Willière, Y., 1963, Les Hystrichosphères ou mieux les acritarches du Silurien Belge, Sondage de la Brasserie Lust à Courtrai (Kortrijk): Bulletin de la Société Belge de Géologie, Paléontologie et Hydrologie, v. 71, p. 450481.Google Scholar
Stricanne, L., Munnecke, A., and Pross, J., 2006, Assessing mechanisms of environmental change: palynological signals across the Late Ludlow (Silurian) positive isotopic excursion (δ13C, δ18O) on Gotland, Sweden: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 230, p. 131.CrossRefGoogle Scholar
Strother, P.K., 2010, Thalloid carbonaceous incrustations and the asynchronous evolution of embryophyte characters during the Early Paleozoic: International Journal of Coal Geology, v. 83, p. 154161.CrossRefGoogle Scholar
Strother, P.K., Wood, G.D., Taylor, W.A., and Beck, J.H., 2004, Middle Cambrian cryptospores and the origin of land plants: Memoirs of the Association of Australasian Palaeontologists, v. 29, p. 99113.Google Scholar
Tappan, H.N., 1980, The Paleobiology of Plant Protists: New York, WH Freeman & Co, 1028 p.Google Scholar
Tappan, H., and Loeblich, A.R. Jr., 1971, Surface sculpture of the wall in Lower Paleozoic acritarchs: Micropaleontology, v. 17, p. 385410.CrossRefGoogle Scholar
Taylor, W.A., and Strother, P.K., 2009, Ultrastructure, morphology, and topology of Cambrian palynomorphs from the Lone Rock Formation, Wisconsin, USA: Review of Palæobotany and Palynology, v. 153, p. 296309.CrossRefGoogle Scholar
Timofeev, B.V., 1959, The ancient flora of the Baltic and its stratigraphic significance: Vsesoyuznyi Neftyanoi Nauchno-Issledovatelskii Geologorazvedochnyi Institut, Leningrad (VNIGRI), Trudy, v. 129, 136 p. [in Russian]Google Scholar
Timofeev, B.V., 1966, Mikropaleofitologicheskoe issledovanie drevnikh svit: Moskva, Akademiya Nauk SSSR Isdatelskvo Nauka, 147 p. [in Russian]Google Scholar
Tongiorgi, M., and Di Milia, A., 1999, Differentiation and spread of the Baltic Acritarch Province (Arenig-Llanvirn), in Tongiorgi, M., and Playford, G., eds., Studies in Palaeozoic palynology. Selected paper from the CIMP Symposium at Pisa, 1998: Bollettino della Società Paleontologica Italiana, v. 38, p. 297312.Google Scholar
Tongiorgi, M., Yin, L.-M., and Di Milia, A., 1995, Arenigian Acritarchs from the Daping Section (Yangtze Gorges area, Hubei province, Southern China) and their palaeogeographic significance: Review of Palaeobotany and Palynology, v. 86, p. 348.CrossRefGoogle Scholar
Tongiorgi, M., Yin, L.-M., and Di Milia, A., 2003, Lower Yushanian to lower Zhejiangian palynology of the Yangtze Gorges area (Daping and Huanghuachang sections), Hubei Province, South China: Palaeontographica Abteilung B, v. 266, p. 1160.CrossRefGoogle Scholar
Traverse, A., 1994, Sedimentation of organic particles: Cambridge, Cambridge University Press, 544 p.CrossRefGoogle Scholar
Traverse, A., and Ginsburg, R.N., 1966, Palynology of the surface sediments of Great Bahama Bank, as related to water movement and sedimentation: Marine Geology, v. 4, p. 417459.CrossRefGoogle Scholar
Uutela, A., and Tynni, R., 1991, Ordovician acritarchs from the Rapla borehole, Estonia: Geological Survey of Finland Bulletin, v. 353, 135 p.Google Scholar
Van de Schootbrugge, B., Tremolada, F., Rosenthal, Y., Bailey, T.R., Feist-Burkhardt, S., Brinkhuis, H., Pross, J., Kent, D.V., and Falkowski, P.G., 2007, End-Triassic calcification crisis and blooms of organic-walled ‘disaster species’: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 244, p. 126141.CrossRefGoogle Scholar
Vanguestaine, M., and Wauthoz, B., 2011, Acritarchs from the Abbaye de Villers and Tribotte Formations in their type section of the Thyle river valley (Middle Ordovician, Brabant Massif, Belgium) and their stratigraphic implications: Geologica Belgica, v. 14, p. 322.Google Scholar
Vavrdová, M., 1974, Geographical differentiation of Ordovician acritarch assemblages in Europe: Review of Palaeobotany and Palynology, v. 18, p. 171175.CrossRefGoogle Scholar
Vecoli, M., 1999, Cambro-Ordovician palynostratigraphy (acritarchs and prasinophytes) of the Hassi-Rmel area and northern Rhadames Basin, North Africa: Palaeontographia Italica, v. 86, p. 1112.Google Scholar
Vecoli, M., 2000, Palaeoenvironmental interpretation of microphytoplankton diversity trends in the Cambrian-Ordovician of the northern Sahara platform: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 160, p. 329346.CrossRefGoogle Scholar
Vecoli, M., and Le Hérissé, A., 2004, Biostratigraphy, taxonomic diversity and patterns of morphological evolution of Ordovician acritarchs (organic-walled microphytoplankton) from the northern Gondwana margin in relation to palaeoclimatic and palaeogeographic changes: Earth-Science Reviews, v. 67, p. 267311.CrossRefGoogle Scholar
Vidal, G., 1981, Lower Cambrian acritarch stratigraphy in Scandinavia: Geologiska Föreningens i Stockholm Förhandlingar, v. 103, p. 183192.CrossRefGoogle Scholar
Volkova, N.A., 1964, Phytoplankton of the oldest deposits from the north-western Moscow area and its significance for stratigraphy: Izvestiya AN SSSR, Seriya geologicheskaya, v. 4, p. 7484. [in Russian]Google Scholar
Volkova, N.A., 1968, Acritarchs from the Precambrian and Cambrian deposits of Estonia, in Volkova, N.A., Zhuravleva, Z.A., Zabrodin, V.E., and Klinger, B.S., eds., Problematics of Riphean and Cambrian layers of the Russian Platform, Urals and Kazakhstan: Moscow, Nauka, p. 836. [in Russian]Google Scholar
Volkova, N.A., Kirjanov, V.V., Piscun, L.V., Pashkyavichene, L.T., and Jankauskas, T.V., 1979, Upper Precambrian and Cambrian palaeontology of the East European Platform: Moscow, Nauka. [in Russian]Google Scholar
Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., 2004, The Great Ordovician Biodiversification Event: New York, Columbia University Press.CrossRefGoogle Scholar
Wicander, R., Playford, G., and Robertson, E.B., 1999, Stratigraphic and palaeogeographic significance of an Upper Ordovician acritarch flora from the Maquoketa Shale, northeastern Missouri, U.S.A.: The Paleontology Society Memoir, v. 51, 38 p.Google Scholar
Wilson, M.A., Palmer, T.J., Guensburg, T.E., Finton, C.D., and Kaufman, L.E., 1992, The development of an Early Ordovician hard ground community in response to rapid sea-floor calcite precipitation: Lethaia, v. 25, p. 1934.CrossRefGoogle Scholar
Woese, C.R., 1990, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya: PNAS, v. 87, p. 45764579.CrossRefGoogle ScholarPubMed
Wright, R.P., and Meyers, W.C., 1981, Organic-walled microplankton in the subsurface Ordovician of northeastern Kansas: Kansas Geological Survey, Subsurface Geology Series, v. 4, 53 p.Google Scholar
Yin, L.-M., Di Milia, A., and Tongiorgi, M., 1998, New and emended acritarch taxa from the lower Dawan Formation (lower Arenig, Huanghuachang Section, South China): Review of Palaeobotany and Palynology, v. 102, p. 223248.CrossRefGoogle Scholar