Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T14:30:22.816Z Has data issue: false hasContentIssue false

Paleobiology of the Mesoproterozoic Billyakh Group, Anabar Uplift, Northern Siberia

Published online by Cambridge University Press:  11 August 2017

V. N. Sergeev
Affiliation:
Geological Institute, Russian Academy of Sciences, Moscow 109017
A. H. Knoll
Affiliation:
Russian Federation, Botanical Museum, Harvard University, Cambridge, Massachusetts 02138
J. P. Grotzinger
Affiliation:
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract

Silicified peritidal carbonates of the Mesoproterozoic Kotuikan and Yusmastakh Formations, Anabar Uplift, northeastern Siberia, contain exceptionally well-preserved microfossils. The assemblage is dominated by ellipsoidal akinetes of nostocalean cyanobacteria (Archaeoellipsoides) and problematic spheroidal unicells (Myxococcoides); both are allochthonous and presumably planktonic. The assemblage also includes distinctive mat-forming scytonematacean and entophysalidacean cyanobacteria, diverse short trichomes interpreted as cyanobacterial hormogonia or germinated akinetes, rare longer trichomes, and several types of colonial unicells. Although many taxa in the Kotuikan-Yusmastakh assemblage are long-ranging prokaryotes, the overall character of the assemblage is distinctly Mesoproterozoic, with its major features shared by broadly coeval floras from Canada, China, India, and elsewhere in Siberia.

Microfossils also occur in middle to inner shelf shales of the Ust’-Il'ya and lower Kotuikan Formations. Leiosphaerid acritarchs (up to several hundred microns in diameter) characterize this facies. As in other Mesoproterozoic acritarch assemblages, acanthomorphic and other complex forms that typify Neoproterozoic assemblages are absent.

The combination in Billyakh assemblages of exceptional preservation and low eukaryotic diversity supports the hypothesis that nucleated organisms diversified markedly near the Mesoproterozoic–Neoproterozoic boundary. The assemblages also demonstrate the antiquity of cyanobacteria capable of cell differentiation and suggest the importance of both changing peritidal substrates and evolving eukaryotes in determining stratigraphic patterns of Proterozoic prokaryotes. The permineralized assemblage contains 33 species belonging to 17 genera. Ten new species or new combinations are proposed: Archaeoellipsoides costatus n. sp., A. elongatus n. comb., A. dolichos n. comb., A. minor n. nom., A. crassus n. comb., A. major n. comb., A. bactroformis n. sp., Veteronostocale medium n. sp., Filiconstrictosus cephalon n. sp., and Partitiofilum yakschinii n. sp.

Type
Research Article
Copyright
Copyright © 1995, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1978. Revised models for depositional Grand Cycles, Cambrian of the southern Rocky Mountains, Canada. Bulletin of Canadian Petroleum Geology, 26:515542.Google Scholar
Allison, C. W., and Awramik, S. M. 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, Northwest Canada. Precambrian Research, 43:253294.CrossRefGoogle Scholar
Angert, E. R., Clemons, K. D., and Pace, N. R. 1993. The largest bacterium. Nature, 362:239241.Google Scholar
Arnott, R. W. C. 1993. Quasi-planar laminated sandstone beds of the Lower Cretaceous Bootlegger Member, north-central Montana: evidence of combined-flow sedimentation. Journal of Sedimentary Petrology, 63:488494.Google Scholar
Awramik, S. M., and Barghoorn, E. S. 1977. The Gunflint microbiota. Precambrian Research, 5:121142.Google Scholar
Butterfield, N. J. and Chandler, F. W. 1992. Paleoenvironmental and biostratigraphic distribution of Proterozoic microfossils, with an example from the Agu Bay Formation (Fury and Hecla Group), Baffin Island. Palaeontology, 35:943957.Google Scholar
Butterfield, N. J., Knoll, A. H., and Swett, K. 1994. Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils and Strata, 34, 84 p.Google Scholar
Fang, Cao. 1992. Algal microfossils of the Middle Proterozoic Gaoyuzhuang Formation in Pingyu County, Beijing. Geological Review, 38:382387 [in Chinese].Google Scholar
Cloud, P. 1976. Beginnings of biospheric evolution and their biogeochemical consequences. Paleobiology, 2:351357.Google Scholar
Duke, W. L. 1985. Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology, 32:167194.Google Scholar
Elenkin, A. A. 1938. Monographie algarum Cyanophycearum aquidulcium et terrestrium infinibus URSS inventarum. Izdetelstvo Akademii Nauk SSSR, Moscow, Pars specialis (Systematica), Fascicle I, 984 p. [in Russian].Google Scholar
Elenkin, A. A. 1949. Monographie algarum Cyanophycearum aquidulcium et terrestrium infinibus URSS inventarum. Izdetelstvo Akademii Nauk SSSR, Moscow, Pars specialis (Systematica). Fascicle II:9851908 [in Russian].Google Scholar
Fairchild, T. R. 1985. Size as a criterion for distinguishing probable eukaryotic unicells in silicified Precambrian microfloras. Paleontologia e Estratigraphia, 2:1520.Google Scholar
Geitler, L. 1925. Cyanophyceae. A. Pascher's Die Süsswasserflora Deutschlands, Österreichs und der Schweiz. Gustav Fischer, Jena, Germany, Band 12, 450 p.Google Scholar
Geitler, L. 1932. Cyanophyceae. Rabenhorst's Kryptogamen-Flora. Akademie Verlagsgesellschaft, Leipzig, Band 14, 1,196 p.Google Scholar
German, T. N. 1990. Organicheskii mir milliard let nazad [Organic world a billion years ago]. Nauka, Leningrad, 50 p.Google Scholar
Giovannoni, S. J., Turner, S., Olsen, G. J., Barns, S., Lane, D. J., and Pace, N. R. 1988. Evolutionary relationships among cyanobacteria and green chloroplasts. Journal of Bacteriology, 170:35843592.Google Scholar
Golovenok, V. K. 1984. Stomatolity i microfitolity v stratigraphii dokembria: nadezhdy i realnost [Stromatolites and microphytolites in Precambrian stratigraphy: hopes and reality]. Sovetskaya Geologiya, 8:4354.Google Scholar
Golovenok, V. K., and Belova, M. Yu. 1981. Precambrian microfossils in cherts from the Anabar Uplift. Doklady Akademii Nauk SSSR, 261:713715 [English version].Google Scholar
Golovenok, V. K., and Belova, M. Yu. 1984. Riphean microbiotas in cherts of the Billyakh Group on the Anabar Uplift. Paleontologicheskyi Zhurnal, 4:2030 [English version].Google Scholar
Golovenok, V. K., and Belova, M. Yu. 1985. Rifeyskie mikrobioty v kremnyakh Yeniseyskogo kryazha [Riphean microbiotas in cherts of the Yenesei Ridge]. Paleontologicheskyi Zhurnal 1985(2):94103.Google Scholar
Golubic, S. 1973. The relationship between blue-green algae and carbonate deposits, p. 434472. In Carr, N. G. and Whitton, B. A. (eds.), The Biology of Blue-Green Algae. Oxford University Press, Oxford.Google Scholar
Golubic, S. 1983. Stromatolites, fossil and recent: a case history, p. 313326. In Westbroek, P. and de Jong, E. W. (eds.), Biomineralization and Biological Metal Accumulation. Reidel, Dordrecht.CrossRefGoogle Scholar
Golubic, S. 1985. Microbial mats and modern stromatolites in Shark Bay, Western Australia, p. 316. In Caldwell, D. E., James, A. B., and Corale, L. B. (eds.), Planetary Ecology. Van Nostrand Reinhold, New York.Google Scholar
Golubic, S., and Campbell, S. E. 1979. Analogous microbial forms in Recent subaerial habitats and in Precambrian cherts: Gloeothece coerulea Geitler and Eosynechococcus moorei Hofmann. Precambrian Research, 8:201217.Google Scholar
Golubic, S., Friedmann, I., and Schneider, J. 1981. The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology, 51:475478.Google Scholar
Golubic, S., and Hofmann, H. J. 1976. Comparison of Holocene and mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: cell division and degradation. Journal of Paleontology, 50:10741082.Google Scholar
Gorokhov, I. M., Semikhatov, M. A., and Drubetskoi, E. P. 1991. Rb-Sr and K-Ar vozrast osadochynh geochronometrov nizhnego rifeya Anabarskogo massiva [Rb-Sr and K-Ar ages of sedimentary geochronometers from the Lower Riphean deposits of the Anabar Massif]. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya, 7:1732.Google Scholar
Green, J. W., Knoll, A. H., Golubic, S., and Swett, K. 1987. Paleobiology of distinctive benthic microfossils from the Upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. American Journal of Botany, 62:835852.Google Scholar
Green, J. W., Knoll, A. H., and Swett, K. 1987. Microfossils from silicified carbonates of the Upper Proterozoic Limestone-Dolomite “Series,” central East Greenland. Geological Magazine, 126:567585.Google Scholar
Grotzinger, J. P. 1986. Evolution of an early Proterozoic passive margin carbonate platform, Rocknest Formation, Wopmay Orogen, Northwest Territories, Canada. Journal of Sedimentary Petrology, 56:831847.Google Scholar
Grotzinger, J. P. 1989. Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype. Society of Economic Paleontologists and Mineralogists Special Publication, 44:79106.Google Scholar
Grotzinger, J. P. 1993. New views of old carbonate sediments. Geotimes, 38(9):1215.Google Scholar
Grotzinger, J. P., and Kasting, J. F. 1993. New constraints on Precambrian ocean composition. Journal of Geology, 101:235243.Google Scholar
Han, T.-M., and Runnegar, B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation. Science, 257:232235.Google Scholar
Hofmann, H. J. 1976. Precambrian microflora, Belcher Island, Canada: significance and systematics. Journal of Paleontology, 50:10401073.Google Scholar
Hofmann, H. J., and Jinbaio, Chen. 1981. Carbonaceous megafossils from the Precambrian (1800 Ma) near Jixian, northern China. Canadian Journal of Earth Sciences, 18:443447.Google Scholar
Hofmann, H. J., and Grotzinger, J. P. 1985. Shelf facies microbiotas from the Odjick and Rocknest Formations (Epworth Group; 1.89 Ga), northwestern Canada. Canadian Journal of Earth Sciences, 22:17811792.Google Scholar
Hofmann, H. J., and Jackson, G. D. 1991. Shelf-facies microfossils from the Uluksan Group (Proterozoic Bylot Supergroup), Baffin Island, Canada. Journal of Paleontology, 65:361382.Google Scholar
Hofmann, H. J., and Schopf, J. W. 1983. Early Proterozoic microfossils, p. 321360. In Schopf, J. W. (ed.), Earth's Earliest Biosphere. Princeton University Press, Princeton, New Jersey.Google Scholar
Horodyski, R. J. 1977. Lyngbya mats at Laguna Mormona, Baja California, Mexico: comparison with Proterozoic stromatolites. Journal of Sedimentary Petrology, 47:13051320.Google Scholar
Horodyski, R. J. 1980. Middle Proterozoic shale-facies biota from the lower Belt Supergroup, Little Belt Mountains, Montana. Journal of Paleontology 54:649663.Google Scholar
Horodyski, R. J., and Donaldson, J. A. 1980. Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Research, 11:125159.Google Scholar
Horodyski, R. J., and Donaldson, J. A. 1983. Distribution and significance of microfossils in cherts of the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada. Journal of Paleontology, 57:271278.Google Scholar
Horodyski, R. J., Donaldson, J. A., and Kerans, C. 1980. A new shale-facies microbiota from the Middle Proterozoic Dismal Lakes Group, District of Mackenzie, Northwest Territories, Canada. Canadian Journal of Earth Sciences, 17:11661173.Google Scholar
Ilchenko, L. N. 1970. Rastitelnye mikrofossilii verhnedokembriiskih otlozhenii zapadnogo sklona Anabarskogo podniatia [Plant microfossils of the Upper Precambrian deposits of the western slope of the Anabar uplift], p. 124141. In Anonymous (ed.), Opornyi razrez verhnedokembriiskih otlozhenii Zapadnogo Sclona Anabarskogo Podniatia [The basic section of the Upper Precambrian deposits of the western slope of the Anabar Uplift]. NIIGA, Leningrad.Google Scholar
Ivanovskaya, A. V., and Timofeev, B. V. 1978. O rannerifeiskih otlozheniyakh na zapadnom sklone Anabarskogo massiva [About Early Riphean deposits on the Western Slope of the Anabar Massif]. Doklady Akademii Nauk SSSR, 240:14111413.Google Scholar
Jankauskas, T. V. 1980. Shishenyakskaya mikrobiota verkhnego rifeya Yuzhnogo Urala [Shisheniak microbiota of the Upper Riphean of the Southern Urals]. Doklady, Akademiya Nauk SSSR, 251:190192.Google Scholar
Jankauskas, T. V. 1989. Mikrofossilii dokembrya SSSR [Precambrian microfossils of the USSR]. Nauka, Leningrad, 188 p.Google Scholar
Knoll, A. H. 1981. Paleoecology of Late Precambrian microbial assemblages, p. 1754. In Niklas, K. (ed.), Paleobotany, Paleoecology and Evolution, volume 1. Praeger, New York.Google Scholar
Knoll, A. H. 1982. Microfossils from the late Precambrian Draken Conglomerate, Ny Friesland, Svalbard. Journal of Paleontology, 56:755790.Google Scholar
Knoll, A. H. 1984. Microorganisms of the Late Precambrian Hunnberg Formation, Nordaustlandet, Svalbard. Journal of Paleontology, 58:131162.Google Scholar
Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science, 256:622627.Google Scholar
Knoll, A. H., and Golubic, S. 1979. Anatomy and taphonomy of a Precambrian algal stromatolite. Precambrian Research, 10:115151.CrossRefGoogle Scholar
Knoll, A. H., Grotzinger, J. P., and Sergeev, V. N. 1993. Carbonate precipitation in stratiform and domai structures from the Mesoproterozoic Kotuikan Formation, northern Siberia. Geological Society of America, Abstracts with Programs, 25(6):A357.Google Scholar
Knoll, A. H., Kaufman, A. J., and Semikhatov, M. A. In press. The carbon isotopic composition of Proterozoic carbonates: Riphean successions from north-eastern Siberia (Anabar Massif, Turukhansk Uplift). American Journal of Science.Google Scholar
Knoll, A. H., and Sergeev, V. N. In press. Taphonomic and evolutionary changes across the Mesoproterozoic–Neoproterozoic transition. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen.Google Scholar
Knoll, A. H., and Swett, K. 1990. Carbonate deposition during the Late Proterozoic Era: an example from Spitsbergen. American Journal of Sciences, 290-A:104132.Google Scholar
Knoll, A. H., Swett, K., and Mark, J. 1991. Paleobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. Journal of Paleontology, 65:531570.Google Scholar
Komar, V. A. 1966. Stromatolity verchnedokembriiskih otlozhenii severa Sibirskoi platformy i ih stratigraphicheskoe znachenie [Stromatolites of the upper Precambrian deposits in the northern Siberian Platform and their stratigraphic significance]. Nauka, Moscow, 122 p.Google Scholar
Krylov, I. N. 1975. Stromatolity rifeya i fanerozoya SSSR [Stromatolites of the USSR Riphean and Phanerozoic]. Nauka, Moscow, 243 p.Google Scholar
Krylov, I. N., Nyzhnov, S. V., and Schapovalova, I. G. 1968. O srtomatolitovykh compleksakh sregnego rifeia [The Middle Riphean stromatolite assemblages]. Doklady Akademii Nauk SSSR, 181:426429.Google Scholar
Krylov, I. N., and Sergeev, V. N. 1986. Rifeiskie mikrofossilii Yuzhnogo Urala v raione goroda Kusa [Riphean microfossils from the vicinity Kusa, southern Ural Mountains], p. 95109. In Anonymous (ed.), Stratigraphia, litologia i geochimia verchnego dokembria Uzhnogo Urala i Priuralia [Stratigraphy, lithology and geochemistry of the Upper Riphean of the southern Urals and near-Ural]. Izdatelstvo Bashkirskogo Filiala Akademii Nauk SSSR, Ufa. Google Scholar
Kumar, S., and Srivastava, P. In press. Microfossils from the Kheinjua Formation, Middle Proterozoic Semri Group, Newari Area, Central India. Precambrian Research. Google Scholar
Kützing, T. F. 1843. Phycologia generalis, oder Anatomie, Physiologie, und Systematik der Tange. F. A. Brockhaus, Leipzig, 458 p.Google Scholar
Licari, G. R., and Cloud, P. 1968. Reproductive structures and taxonomic affinities of some nannofossils from the Aphebian Gunflint Iron Formation. Proceedings of the National Academy of Sciences, USA, 59:10531960.Google Scholar
McCormick, D. S., and Grotzinger, J. P. 1993. Distinction of marine from alluvial facies in the Paleoproterozoic (1.9 Ga) Burnside Formation, Kilohigok Basin, N.W.T., Canada. Journal of Sedimentary Petrology, 63:398419.Google Scholar
Maliva, R. G., Knoll, A. H., and Siever, R. 1989. Secular change in chert distribution: a reflection of evolving biological participation in the silica cycle. Palaios, 4:519532.Google Scholar
Mendelson, C. V., and Schopf, J. W. 1982. Proterozoic microfossils from the Sukhaya Tunguska, Shorikha and Yudoma Formations of the Siberian Platform, USSR. Journal of Paleontology, 56:4283.Google Scholar
Missarzhevskii, V. V. 1989. Drevneishie skeletnye okamenelosti i stratigraphia pogranichnyh tolsch dokembria i kembria [The oldest shelly fossils and stratigraphy of the Precambrian–Cambrian boundary deposits]. Nauka, Moscow, 137 p.Google Scholar
Monty, C. L. V. 1967. Distribution and structure of recent stromatolitic algal mats, eastern Andros Island, Bahamas. Annales de la Societe Geologique de Belgique, 90:55100.Google Scholar
Mount, J. F., and Kidder, D. 1993. Combined flow origin of edgewise intraclast conglomerates: Sellick Hill Formation (Lower Cambrian), South Australia. Sedimentology, 40:315329.Google Scholar
Muir, M. D. 1976. Proterozoic microfossils from the Amelia Dolomite, McArthur Basin, Northern Territory, Alcheringa, 1:143158.Google Scholar
Muir, M. D. 1983. Proterozoic microfossils from the Mara Dolomite Member, Emmerugga Dolomite, McArthur Group, from the Northern Territory, Australia. Botanical Journal of the Linnean Society, 86:118.Google Scholar
Nägeli, C. 1849. Gattungen einzelliger Algen, physiologisch und under systematisch bearbeitet. F. Schulthess, Zürich, 139 p.Google Scholar
Nichols, J. M., and Adams, D. G. 1982. Akinetes, p. 387412. In Carr, N. G. and Whitton, B. A. (eds.), The Biology of Cyanobacteria. University of California Press, Berkeley.Google Scholar
Oehler, D. Z. 1978. Microflora of the middle Proterozoic Balbirini Dolomite (McArthur Group) of Australia. Alcheringa, 2:269310.CrossRefGoogle Scholar
Ogurtsova, R. N., and Sergeev, V. N. 1987. The microbiota of the Upper Precambrian Chichkanskaya Formation in the Lesser Karatau Region (southern Kazakhstan). Paleontologicheskii Zhurnal, 2:101112 [English version].Google Scholar
Ogurtsova, R. N., and Sergeev, V. N. 1989. Megaspheromorphids from the Upper Precambrian Chichkanskaya Formation, southern Kazakhstan. Paleontologicheskii Zhurnal, 2:119122 [English version].Google Scholar
Peat, C. J., Muir, M. D., Plumb, K. A., McKirdy, D. M., and Norvick, M. S. 1978. Proterozoic microfossils from the Roper Group, Northern Territory, Australia. BMR Journal of Australian Geology and Geophysics, 3:117.Google Scholar
Plumb, K. A. 1991. New Precambrian time scale. Episodes, 14:139140.Google Scholar
Rabenhorst, L. 1865. Flora Europaea Algarum. Eduard Kummer, Leipzig, 2, 319 p.Google Scholar
Savitskii, V. E., Zhuravleva, I. T., Kiryanov, V. V., Luchinina, V. A., Meshkova, N. P., and Skishkin, B. B. 1980. Nemakit-Daldynskii fascyostratotip granitscy kembria and dokembria [The Nemakit-Daldyn stratotype of the Precambrian–Cambrian boundary], p. 164170. In Anonymous (ed.), Dokembrii: Doklady sovetskih geologov na XXVI Mezhdunarodnum Geologicheskom Kongresse, sectscia 07 [Precambrian: The reports of the Soviet geologists presented at the XXVI International Geological Congress]. Nauka, Moscow.Google Scholar
Schenfil, V. Yu., and Yakschin, M. S. 1982. K stratigraphii rifeiskih otlozhenii zapadnogo sklona Anabarskogo massiva [Stratigraphy of the Riphean deposits of the western Slope of the Anabar Uplift], p. 3142. In Anonymous (ed.), Novye dannye po stratigraphii pozdnego dokembriya Sibiri [New data on the stratigraphy of the Late Precambrian of Siberia]. IGiG SO Akademii Nauk SSSR, Novosibirsk.Google Scholar
Schopf, J. W. 1968. Microflora of the Bitter Springs Formation, Late Precambrian, Central Australia. Journal of Paleontology, 42:651688.Google Scholar
Schopf, J. W., and Blacic, B. M. 1971. New microorganisms from the Bitter Springs Formation (Late Precambrian) of the north-central Amadeus Basin, central Australia. Journal of Paleontology, 45:925960.Google Scholar
Schopf, J. W., and Klein, C. (eds.). 1992. The Proterozoic Biosphere. Cambridge University Press, Cambridge, 1,348 p.Google Scholar
Semikhatov, M. A. 1976. Experience in stromatolite studies in the USSR, p. 337357. In Walter, M. R. (ed.), Stromatolites. Elsevier, Amsterdam.Google Scholar
Semikhatov, M. A. 1985. Stromatolity v stratigraphii dokembria: analiz-84 [Stromatolites in the Precambrian stratigraphy: analysis-84]. Izvestia Akademii Nauk SSSR, Seriya Geologicheskaya, 4:321.Google Scholar
Semikhatov, M. A. 1991. General Problems of Proterozoic Stratigraphy in the USSR. Soviet Scientific Reviews, Section Geology, 1, 192 p.Google Scholar
Semikhatov, M. A., and Serebryakov, S. N. 1983. Sibirskii gipostratotip rifeya [The Siberian Hypostratotype of the Riphean]. Trudy Geologicheskogo Instituta, Akademii Nauk SSSR, Moscow, Nauka, 367, 224 p.Google Scholar
Serebryakov, S. N. 1975. Osobennosty formirovania i razmeschenia rifeiskih stromatolitov Sibiri [Pecularities of formation and location of Riphean Siberian stromatolites]. Nauka, Moscow, 175 p.Google Scholar
Sergeev, V. N. 1989. Microfossils from transitional Precambrian–Phanerozoic strata of Central Asia. Himalayan Geology, 13:269278.Google Scholar
Sergeev, V. N. 1992a. Okremnennye mikrofossilii avzyanskoy svity Yuzhnogo Urala [Silicified microfossils from the Avzyan Formation, southern Ural Mountains]. Paleontologicheskii Zhurnal, 2:103112.Google Scholar
Sergeev, V. N. 1992b. Okremnennye mikrofossilii dokembrya i kembrya Urala i Sredney Azii [Silicified microfossils from the Precambrian and Cambrian deposits of the southern Ural Mountains and Middle Asia]. Nauka, Moscow, 134 p.Google Scholar
Sergeev, V. N. 1992c. Paleoenvironmental control on the composition of the microbial communities, the Lower Riphean Kotuikan Formation, northern Siberia. 29th International Geological Congress, Abstracts, 2:262.Google Scholar
Sergeev, V. N. 1993. Silicified Riphean microfossils of the Anabar Uplift. Stratigraphy and Geological Correlation, 1:264278.Google Scholar
Sergeev, V. N., Knoll, A. H., Kolosova, S. P., and Kolosov, P. N. 1994. Microfossils in cherts from the Mesoproterozoic Debengda Formation, Olenek Uplift, northeastern Siberia. Stratigraphy and Geological Correlation, 2:1933.Google Scholar
Sogin, M. L., Gunderson, G. H., Elwood, H. J., Alonso, R. A., and Peattie, D. A. 1989. Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia . Science, 243:7577.Google Scholar
Southard, J. B., Lambie, J. M., Federico, D. C., Pile, H. T., and Weidman, C. R. 1990. Experiments on bed configurations in fine sands under bidirectional purely oscillatory flow, and the origin of hummocky cross-stratification. Journal of Sedimentary Petrology, 60:117.Google Scholar
Stanier, R. Y., et al. 1978. Proposal to place nomenclature of the Cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of bacteria. International Journal of Systematic Bacteriology, 28:335336.Google Scholar
Strother, P. K., Knoll, A. H., and Barghoorn, E. S. 1983. Microorganisms from the late Precambrian Narssârssuk Formation, northwestern Greenland. Palaeontology, 26:132.Google Scholar
Sumons, R. E., and Walter, M. R. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290A:212244.Google Scholar
Sun, Weiguo. 1987. Palaeontology and biostratigraphy of Late Precambrian macroscopic colonial algae: Chuaria Walcott and Tawuia Hofmann. Palaeontographica B, 203:109134.Google Scholar
Thuret, G. 1875. Essai de classification des nostocines. Annales des Sciences Naturelles, Paris (Botanique), 6:372382.Google Scholar
Timofeev, B. V., German, T. N., and Mikhailova, N. S. 1976. Mikrofitofossilii dokembria, kembria i ordovika [Microphytofossils of the Precambrian, Cambrian and Ordovician]. Nauka, Leningrad, 106 p.Google Scholar
Veis, A. F. 1985. Mikrofossilii iz nizhnerifeiskih otlozhenii Sibiri [Microfossils from the Lower Riphean deposits of Siberia]. Proceedings of the Fifth All-Union Conference, Palynologicheshie taxony v biostratigraphii [Palynological Taxa in Biostratigraphy], GIN, Moscow, 1:4445.Google Scholar
Veis, A. F., and Vorobyeva, N. G. 1992. Mikrofossilii rifeya i venda Anabarskogo massiva [Riphean and Vendian microfossils of the Anabar Uplift]. Izvestya RAN, Seria Geologocheskaya, 1:114130.Google Scholar
Fuxing, Wang, Xuanyang, Zhang, and Ruihan, Guo. 1983. The Sinian microfossils from Jinning, Yunnan, South West China. Precambrian Research, 23:133175.Google Scholar
Wettstein, F. V. 1924. Handbuch der Systematischer Botanik, 3rd Edition. Franz Deutike, Leipzig, Band 1, 1,017 p.Google Scholar
Wilmotte, A., and Golubic, S. 1991. Morphological and genetic criteria in the taxonomy of Cyanophyta/Cyanobacteria. Algological Studies, 64:124.Google Scholar
Woese, C., and Fox, G. 1977. Phylogenetic structure of the prokaryotic domain. Proceedings, National Academy of Sciences, U.S.A., 74:50885090.Google Scholar
Wolk, C. P. 1965. Control of sporulation in a blue-green alga. Developmental Biology, 12:1555.Google Scholar
Yakschin, M. S. 1986. Microbiota Kotuikanskoi svity billyakhskoi serii refeya Anabarskogo Podnyatia [Microbota of the Kotuikan Formation, Billyakh Group, Anabar Uplift], p. 8488. In Anonymous (ed.), Pozdnii dokembrii i ranii paleozoi Sibiri. Sibirskaya platforma and vneshnya zona Altae-Sayanskoi Skladchatoi oblasti. Novosibirsk, 84–98.Google Scholar
Yakschin, M. S. 1989. Microbiota of Kotuikanskaya suite (Lower Riphean) of the Anabar Uplift. Himalayan Geology, 13:239248.Google Scholar
Yakschin, M. S. 1990. K voprosu o prirode microstruktur rannerifeiskih plastovyh stromatolitov [Origin of microstructures in the Early Riphean flat-laminated stromatolites], p. 513. In Anonymous (ed.), Iskopaemye problematiki SSSR [Bizarre Fossils of the USSR]. Nauka, Moscow.Google Scholar
Yakschin, M. S. 1991. Vodoroslevaya mikrobiota nizhnego rifeya Anabarskogo podnyatia [Algal microbiota from the Lower Riphean deposits of Anabar Uplift]. Novosibirsk, Nauka, Sibirskoe Otdelenie, 61 p.Google Scholar
Leiming, Yin. 1985. Microfossils of the Doushantou Formation in the Yangtze Gorge District, western Hubei. Palaeontologia Cathayana, 2:229249.Google Scholar
Leiming, Yin. 1987. Microbiotas of latest Precambrian sequences, p. 415494. In Anonymous (ed.), Stratigraphy and Paleontology of the Systemic Boundaries in China. Precambrian–Cambrian Boundary I. Nanjing University Publishing House, Nanjing.Google Scholar
Wenlong, Zang and Walter, M. R. 1992. Late Proterozoic and Cambrian microfossils and biostratigraphy, Amadeus Basin, Central Australia. Memoir, Association of Australasian Paleontologists, 12:1132.Google Scholar
Pengyuan, Zhang. 1982. Microfossils from the Wumishan Formation of Jixian County. Acta Geologica Sinica, 53:8790 [in Chinese].Google Scholar
Pengyuan, Zhang, and Shuqin, Gu. 1986. Microfossils from the Wumishan Formation of the Jixian System in the Ming Tombs, Beijing, China. Acta Geologica Sinica, 60:1322 [in Chinese].Google Scholar
Pengyuan, Zhang, Mu, Zhu, and Wu, Song. 1989. Middle Proterozoic (1200–1400 Ma) microfossils from the Western Hills near Beijing, China. Canadian Journal of Earth Sciences, 26:322328.Google Scholar
Yun, Zhang. 1981. Proterozoic stromatolite microfloras of the Gaoyuzhuang Formation (Early Sinian: Riphean), Hebei, China. Journal of Paleontology, 55:485506.Google Scholar
Yun, Zhang. 1985. Coccoid microfossils from the Doushantou Formation (Late Sinian) of southern China. Precambrian Research, 28:163173.Google Scholar
Yun, Zhang. 1989. Multicellular thallophytes with differentiated tissues from late Proterozoic phosphate rocks of South China. Lethaia, 22:113132.Google Scholar
Yun, Zhang, and Xunlai, Yuan. 1992. New data on multicellular thallophytes and fragments of cellular tissues from Late Proterozoic phosphate rocks, South China. Lethaia, 25:118.Google Scholar
Zhongying, Zhang. 1986. Solar cyclicity in the Precambrian microfossil record. Palaeontology, 29:101111.Google Scholar
Zhuravleva, Z. A. 1964. Onkolity and katagraphii rifeya i nizhnego kembria Sibiri i ih stratigraphicheskoe znachenie [Riphean and Lower Cambrian Oncolites and Catagraphs of Siberia and their stratigraphic significance]. Nauka, Moscow, 199 p.Google Scholar
Zlobin, M. N., and Golovanov, N. P. 1970. Stratigraphycheskii ocherk verhnedokembriiskih otlozhenii zapadnogo sklona Anabarskogo podniatia [A stratigraphic outline of the Upper Precambrian deposits of the Western Slope of the Anabar Uplift], p. 621. In Anonymous (ed.), Opornyi razrez verhnedokembriiskih otlozhenii Zapadnogo Sclona Anabarskogo Podniatia [The basic section of the Upper Precambrian deposits of the Western Slope of the Anabar Uplift]. NIIGA, Leningrad.Google Scholar