Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T17:24:59.989Z Has data issue: false hasContentIssue false

Ossicular homologies, systematics, and phylogenetic implications of certain North American Carboniferous asteroids (Echinodermata)

Published online by Cambridge University Press:  20 May 2016

Daniel B. Blake
Affiliation:
Department of Geology, University of Illinois, Urbana 61801,
Dan R. Elliott
Affiliation:
Biology Department, Central Methodist College, Fayette, Missouri 65248,

Abstract

Emphereaster missouriensis new genus and species, Ambigaster, new genus, and Delicaster, new genus are assigned to the Carboniferous asteroid family Neopalaeasteridae Schuchert. The neopalaeasterids are similar to but separable from the Carboniferous Monasteridae, Calliasterellidae, and Fandasteridae, n. fam., in ambulacral and other characters. The several families indicate that late Paleozoic asteroids were diverse although poorly documented.

Similarities between late Paleozoic stem-group and post-Paleozoic crown-group asteroids allow argumentation on ossicular homologies. In species with only a single row of arm marginals, an earlier suggestion that certain disk ossicles are superomarginals is rejected. Enlarged proximal adambulacrals fill space on the actinal surface whereas actinal ossicles, generally lacking in Paleozoic asteroids, provide the space-filling service in crown-group asteroids.

The body wall beyond the ambulacral column and accessory ossicles traditionally have been stressed in the classification of asteroids of all ages. Because of body wall homoplasies, many older taxonomic concepts do not identify monophyletic late Paleozoic clades, nor do they indicate the derivation of the crown group. Ambulacral characters in contrast are conservative through long periods of geologic time, improving phylogenetic resolution as more taxonomic data become available. Now-available ambulacral skeletal data for certain Carboniferous genera suggest membership in lineages basal to the post-Paleozoic crown group.

Emphereaster missouriensis and most neopalaeasterids are stoutly constructed suggesting a defensive mechanism against durophagous chondrichthyan fish that co-occur with the holotype of Emphereaster. Abundant sponge spicules within the disk of the holotype suggest it fed on sponges, a prey type widely exploited by living asteroids.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

de Blainville, H. M. 1830. Zoophytes. Dictionnaire des Sciences Naturelles. F. G. Levrault, Strasbourg, 60 p.Google Scholar
Blake, D. B. 1978. The taxonomic position of the modern sea star Cistina Gray, 1840. Proceedings of the Biological Society of Washington, 91:234241.Google Scholar
Blake, D. B. 1987. A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). Journal of Natural History, 21:481528.CrossRefGoogle Scholar
Blake, D. B. 1995. A new asteroid genus from the Carboniferous of Ireland and its phylogenetic position and paleoecology. Irish Journal of Earth Sciences, 14:6580.Google Scholar
Blake, D. B., and Hagdorn, H. 2002. The Asteroidea of the Muschelkalk (Triassic): taxonomy, phylogeny and ecology. Palaeontologische Zeitshrift, 77:137.Google Scholar
Blake, D. B., Tintori, A., and Hagdorn, H. 2000. A new asteroid (Echinodermata) from the Norian (Triassic) Calcare di Zorzino of northern Italy: its stratigraphic occurrence and phylogenetic significance. Rivista Italiana di Paleontologia e Stratigrafia, 106:141156.Google Scholar
Chestnut, D. R., and Ettensohn, F. R. 1988. Hombergian (Chesterian) echinoderm paleontology and paleoecology, south-central Kentucky. Bulletins of American Paleontology, 95, 102 p.Google Scholar
Döderlein, L. 1920. Die Asteriden der Siboga-Expedition 2: Die Gattung Luidia und ihre Stammesgeschichte. Siboga-Expeditie Monograph 46b, 193293.Google Scholar
Etheridge, R. 1892. A monograph of the Carboniferous and Permo-Carboniferous Invertebrata of New South Wales, Pt. 2, Echinodermata, Annelida, and Crustacea. Memoirs of the New South Wales Geological Survey, Palaeontology, 5:67131.Google Scholar
Fisher, W. K. 1928. Asteroidea of the North Pacific and adjacent waters. 2. Forcipulata (Part). U.S. National Museum Bulletin, 76, 267 p.Google Scholar
Gale, A. S. 1987. Phylogeny and classification of the Asteroidea. Zoological Journal of the Linnean Society, 89:107132.CrossRefGoogle Scholar
Gregory, J. W. 1899. On Lindstromaster and the classification of the palaeasterids. Geological Magazine, 36:341354.CrossRefGoogle Scholar
Jangoux, M. 1982. Food and feeding mechanisms: Asteroidea, p. 117160. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Nutrition. A. A. Balkema, Rotterdam.Google Scholar
Jell, P. 1999. A monasterid starfish from the Permian of Timor. Memoirs of the Queensland Museum, 43:340.Google Scholar
Kano, Y. T., Komatsu, M., and Oguro, C. 1974. Notes on the development of the sea-star Leptasterias ochotensis simispinis, with special reference to skeletal system. Proceedings of the Japanese Society of Systematic Zoology, 10:4553.Google Scholar
Kelly, S. M. 1984. Fauna and paleoecology of the Middle Chester Indian Springs Shale, Sulphur, Indiana. Unpublished Ph.D. dissertation, Indiana University, Bloomington.Google Scholar
Kesling, R. V. 1967. Neopalaeaster enigmaticus, new starfish from Upper Mississippian Paint Creek Formation in Illinois. Contributions from the The Museum of Paleontology, The University of Michigan, 21:7385.Google Scholar
Kesling, R. V. 1969a. Three Permian starfish from Western Australia and their bearing on revision of the Asteroidea. Contributions from The Museum of Paleontology, The University of Michigan, 22:361376.Google Scholar
Kesling, R. V. 1969b. Siliciaster, a new genus of Devonian starfish. Contributions from The Museum of Paleontology, The University of Michigan, 22:249261.Google Scholar
Kesling, R. V., and Strimple, H. V. 1966. Calliasterella americana, a new starfish from the Pennsylvanian of Illinois. Journal of Paleontology, 40:11571166.Google Scholar
Komatsu, M. 1975a. On the development of the sea-star, Astropecten latespinosus Meissner. Biological Bulletin, 148:4959.CrossRefGoogle Scholar
Komatsu, M. 1975b. Development of the sea-star, Asterina cononata japonica Hayashi. Biological Bulletin, 11:4248.Google Scholar
de Koninck, L. G. 1878. Recherches sur les Fossiles Paléozoiques de la nouvelle-Galles du Sud (Australie). Mémoires de la Société Royale des Sciences de Liége, series 2, 7, 255 p., Bruxelles, (F. Hayez).Google Scholar
Lane, N. G., and Frakes, L. A. 1970. A Permian starfish from South West Africa. Journal of Paleontology, 44:11351136.Google Scholar
Ludwig, H. 1905. Asteroidea. Memoires of the Museum of Comparative Zoology, 32, 292 p.Google Scholar
Miller, S. A. 1880. Description of two new species from the Niagara Group, and five from the Keokuk Group. Journal of the Cincinnati Society of Natural History, 2:254259.Google Scholar
Mooi, R., and David, B. 2000. What a new model of skeletal homologies tells us about asteroid evolution. American Zoologist, 40:326339.Google Scholar
Piveteau, J. 1953. Traité de Paléontologie, Volume 3, 1063 p. Masson, Paris.Google Scholar
Schöndorf, F. 1909. Die Asteriden des russischen Karbon. Palaeontographica, 56:323338.Google Scholar
Schuchert, C. 1914. Stelleroidea Palaeozoica. Fossilium Catalogus, I: Animalia 3, 53 p.Google Scholar
Schuchert, C. 1915. Revision of Paleozoic Stelleroidea with special reference to North American Asteroidea. Bulletin of the U. S. National Museum, 88, 312 p.CrossRefGoogle Scholar
Spencer, W. K. 1914–1940. British Palaeozoic Asterozoa. Palaeontographical Society of London Memoir, 540 p.Google Scholar
Spencer, W. K. 1916. British Palaeozoic Asterozoa, Pt. 2. Palaeontographical Society of London Memoir, 57108.Google Scholar
Spencer, W. K. 1918. British Palaeozoic Asterozoa, Pt. 3. Palaeontographical Society of London Memoir, 109168.Google Scholar
Spencer, W. K. 1930. British Palaeozoic Asterozoa, Pt. 8. Palaeontographical Society of London Memoir, 389436.Google Scholar
Spencer, W. K. 1951. Early Palaeozoic starfishes. Philosophical Transactions of the Royal Society, London, Series B, 235:87129.Google Scholar
Spencer, W. K., and Wright, C. W. 1966. Asterozoans, p. U4U107. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Sumida, P. Y. G., Tyler, P. A., and Billett, D. S. M. 2001. Early juvenile development of deep-sea steroids of the NE Atlantic Ocean, with notes on juvenile bathymetric distributions. Acta Zoologica, 82:1140.CrossRefGoogle Scholar
Webster, G. D., and Jell, P. 1992. Permian echinoderms from Western Australia. Memoirs of the Queensland Museum, 32:311373.Google Scholar
Webster, G. D., Hafley, D. J., Blake, D. B., and Glass, A. 1999. Crinoids and stelleroids (Echinodermata) from the Broken Rib Member, Dyer Formation (Late Devonian, Famennian) of the White River Plateau, Colorado. Journal of Paleontology, 73:461486.CrossRefGoogle Scholar
Yamaguchi, M. 1973. Early life histories of coral reef asteroids, with special reference to Acanthaster planci (L.), p. 369387. In Jones, O. H. and Endean, R. (eds.), Biology and Geology of Coral Reefs. Volume 2. Biology 1. Academic Press, London.CrossRefGoogle Scholar