Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-31T03:14:56.414Z Has data issue: false hasContentIssue false

Obruchevodid petalodonts (Chondrichthyes, Petalodontiformes, Obruchevodidae) from the Middle Mississippian (Viséan) Joppa Member of the Ste. Genevieve Formation at Mammoth Cave National Park, Kentucky U.S.A.

Published online by Cambridge University Press:  24 January 2025

John-Paul M. Hodnett*
Affiliation:
Archaeology Office, Natural and Historic Resource Division, Maryland-National Capitol Park and Planning Commission, Upper Marlboro, Maryland 28608, USA Paleontology Program, Geological Resource Division, National Park Service, Washington D.C. USA
H. Chase Egli
Affiliation:
Department of Geological Sciences, University of Alabama, Tuscaloosa, AL U.S.A 35487
Rickard Toomey
Affiliation:
Mammoth Cave National Park, National Park Service, KY USA 42259
Rickard Olson
Affiliation:
Mammoth Cave National Park, National Park Service, KY USA 42259
Kelli Tolleson
Affiliation:
Mammoth Cave National Park, National Park Service, KY USA 42259
Richard Boldon
Affiliation:
Mammoth Cave National Park, National Park Service, KY USA 42259
Justin S. Tweet
Affiliation:
Paleontology Program, Geological Resource Division, National Park Service, Washington D.C. USA
Vincent L. Santucci
Affiliation:
Paleontology Program, Geological Resource Division, National Park Service, Washington D.C. USA
*
Corresponding author: John-Paul M. Hodnett; Email: [email protected]

Abstract

Obruchevodid petalodonts are rare small chondrichthyans known from nearly complete to partial skeletons from the Upper Mississippian (Serpukhovian) Bear Gulch Limestone of central Montana and isolated teeth from the Upper Mississippian Bangor Limestone of northern Alabama. New records of obruchevodid petalodonts are presented here from the Middle Mississippian (Viséan) Joppa Member of the Ste. Genevieve Formation at Mammoth Cave National Park, Kentucky. Obruchevodids are here represented by multiple teeth of a new taxon, Clavusodens mcginnisi n. gen. n. sp., and a single tooth referred to ?Netsepoye sp. Clavusodens mcginnisi n. gen. n. sp. is characterized by teeth with pointed mesiodistal and lingual margins and more robust chisel-like cusps on the anterolateral and distolateral teeth. The suggestion that obruchevodid petalodonts evolved to inhabit complex reef-like environments and other nearshore habitats with a feeding ecology analogous to extant triggerfish is explored and discussed.

UUID: http://zoobank.org/0955c37a-c458-4a4d-89c4-01d6915adeca

Type
Articles
Copyright
Copyright © The Author(s), 2025. Published by Cambridge University Press on behalf of Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Handling Editor: Kerin Claeson

References

Brandt, S., 1996, Janassa korni (Weigelt) – Neubeschreibung eines petalodonten Elasmobranchiers aus dem Kupferschiefer und Zechsteinkalk (Perm) von Eisleben (Sachsen-Anhalt): Paläontologische Zeitschrift, v. 70, p. 505520, https://doi.org/10.1007/BF02988089.CrossRefGoogle Scholar
Brandt, S., 2009, Über Neufunde von Janassa korni (Weigelt), einen petalodonten Elasmobranchier aus dem Kupferschiefer (Ober-Perm) von Eisleben und Sangerhausen (Sachsen-Anhalt): Veröffentlichungen Naturhistorisches Museum Schleusingen, v. 24, p. 1526.Google Scholar
Compagno, L.J.V., 1990, Alternate life-history styles of cartilaginous fishes in time and space: Environmental Biology of Fishes, v. 28, p. 3375.CrossRefGoogle Scholar
Cooper, J.A., Griffin, J.N., Kindlimann, R., and Pimiento, C., 2023, Are shark teeth proxies for functional traits? A framework to infer ecology from the fossil record: Journal of Fish Biology, v. 103, p. 798814, https://doi.org/10.1111/jfb.15326.CrossRefGoogle ScholarPubMed
Davis, J.W., 1883, On the fossil fishes of the Carboniferous Limestone Series of Great Britain: Scientific Transactions of the Royal Dublin Society, ser. 2, v. 1, p. 327548.Google Scholar
Egli, H.C., Hodnett, J.-P.M., Hodge, C.M., and Ward, G.V., 2024, Obruchevodid petalodonts (Chondrichthyes) from the Upper Mississippian (Serpukhovian) Bangor Limestone of northern Alabama, USA: Historical Biology, https://doi.org/10.1080/08912963.2024.2412139.Google Scholar
Ginter, M., Hampe, O., and Duffin, C.J., 2010., Chondrichthyes. Paleozoic Elasmobranchii: Teeth, in Schultze, H.-P., ed., Handbook of Paleoichthyology, v. 3D: Munich, Verlag Dr. Friedrich Pfeil, p. 1168.Google Scholar
Grogan, E.D., and Lund, R., 2002, The geological and biological environment of the Bear Gulch Limestone (Mississippian of Montana, USA) and a model for its deposition: Geodiversitas, v. 24, p. 295315.Google Scholar
Grogan, E.D., Lund, R., and Fath, M., 2014, A new petalodont chondrichthyan from the Bear Gulch Limestone of Montana, USA, with reassessment of Netsepoye hawesi and comments on the morphology of holomorphic petalodonts: Paleontological Journal, v. 48, p. 10031014, https://doi.org/10.1134/S0031030114090044.CrossRefGoogle Scholar
Hansen, M.C., 1985, Systematic relationships of petalodontiform chondrichthyans, in Dutro, J.T. Jr, and Pfefferkorn, H.W, eds., Ninth International Congress on Carboniferous Stratigraphy and Geology (Washington, D.C. and Urbana-Champaign, 17–26 May 1979), Compte Rendu, vol. 5, Paleontology, Paleoecology, Paleogeography: Carbondale and Edwardsville, Illinois, Southern Illinois University Press, p. 523541.Google Scholar
Hodnett, J.-P.M., Toomey, R., Olson, R., Tweet, J.S., and Santucci, V.L., 2023, Janassid petalodonts (Chondrichthyes, Petalodontiformes, Janassidae) from the Middle Mississippian (Viséan) Ste. Genevieve Formation, Mammoth Cave National Park, Kentucky, USA: Historical Biology, v. 36, p. 17831792, https://doi.org/10.1080/08912963.2023.2231955.CrossRefGoogle Scholar
Hodnett, J.-P.M., Toomey, R., Olson, R., Tolleson, K., Boldon, R., Wood, J., Tweet, J.S., and Santucci, V.L., 2024a, Sharks in the dark: paleontological resource inventory reveals multiple successive Mississippian Subperiod cartilaginous fish (Chondrichthyes) assemblages within Mammoth Cave National Park, Kentucky: Parks Stewardship Forum, v. 40, p. 5367, https://doi.org/10.5070/P540162921.CrossRefGoogle Scholar
Hodnett, J.-P.M., Toomey, R., Egli, H.C., Ward, G., Wood, J.R., Olson, R., Tolleson, K., Tweet, J.S., and Santucci, V.L., 2024b, New ctenacanth sharks (Chondrichthyes; Elasmobranchii; Ctenacanthiformes) from the Middle to Late Mississippian of Kentucky and Alabama: Journal of Vertebrate Paleontology, v. 43, e2292599, https://doi.org/10.1080/02724634.2023.2292599.Google Scholar
Huxley, T.H., 1880, On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia: Proceedings of the Zoological Society of London, v. 43, p. 649662.Google Scholar
Jaekel, O., 1899, Ueber die Organisation der Petalodonten: Zeitschrift der Deutschen Geologischen Gesellschaft, v. 51, p. 258298.Google Scholar
Janvier, P., 1996, Early Vertebrates. Oxford Monographs on Geology and Geophysics: Oxford, UK, Clarendon Press, v. 33, 393 p.Google Scholar
Lund, R., 1983, On a dentition of Polyrhizodus (Chondrichthyes, Petalodontiformes) from the Namurian Bear Gulch Limestone of Montana: Journal of Vertebrate Paleontology, v. 3, p. 16.CrossRefGoogle Scholar
Lund, R., 1989, New petalodonts (Chondrichthyes) from the Upper Mississippian Bear Gulch Limestone (Namurian E₂b) of Montana: Journal of Vertebrate Paleontology, v. 9, 350368.CrossRefGoogle Scholar
Lund, R., and Grogan, E.D., 1997, Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes: Reviews in Fish Biology and Fisheries, v. 7, p. 65123.CrossRefGoogle Scholar
Lund, R., Grogan, E.D., and Fath, M., 2014, On the relationships of the Petalodontiformes (Chondrichthyes): Paleontological Journal, v. 48, p. 10151029, https://doi.org/10.1134/S0031030114090081.CrossRefGoogle Scholar
Lund, R., Greenfest-Allen, E., and Grogan, E.D., 2015, Ecomorphology of the Mississippian fishes of the Bear Gulch Limestone (Heath Formation, Montana, USA): Environmental Biology of Fish, v. 98, p. 739754, https://doi.org/10.1007/s10641-014-0308-x.CrossRefGoogle Scholar
Matsuura, K., 2015, Taxonomy and systematics of tetraodontiform fishes: a review focusing primarily on progress in the period from 1980 to 2014: Ichthyology Research, v. 62, p. 72113, https://doi.org/10.1007/s10228-014-0444-5.CrossRefGoogle Scholar
McCord, C.L., and Westneat, M.W., 2016, Evolutionary patterns of shape and functional diversification in the skull and jaw musculature of triggerfish (Teleostei: Balistidae): Journal of Morphology, v. 277, p. 737752, https://doi.org/10.1002/jmor.20531.CrossRefGoogle ScholarPubMed
Newberry, J.S., and Worthen, A.H., 1866, Descriptions of new species of vertebrates, mainly from the Sub-Carboniferous limestone and Coal Measures of Illinois: Geological Survey of Illinois, v. 2, p. 9134.Google Scholar
Newberry, J.S., and Worthen, A.H., 1870, Geology and palaeontology. Descriptions of fossil vertebrates: Geological Survey of Illinois, v. 4, p. 343374.Google Scholar
Owen, R., 1840–1845, Odontography; or, A Treatise on the Comparative Anatomy of the Teeth; Their Physiological Relations, Mode of Development, and Microscopic Structure, in the Vertebrate Animals Vol. 1: London, H. Baillière, 655 p.Google Scholar
Palmer, A.N., 1981, A Geological Guide to Mammoth Cave National Park: Teaneck, New Jersey, Zephyrus Press, 196 p.Google Scholar
Patterson, C., 1965, The phylogeny of the chimaeroids: Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, v. 249, p. 101219.Google Scholar
Sale, P.F., 1977, Maintenance of high diversity in coral reef fish communities: American Naturalist, v. 111, p. 337359.CrossRefGoogle Scholar
Schaumberg, G. 1979. Neue Kennntisse über die Anatomie von Janassa bituminosa (Schlotheim), Holocephali, Chondrichthyes aus dern permischen Kupferschiefer: Palaontologische Zeitschrift, v. 53, no. 3–4, p. 334346.CrossRefGoogle Scholar
Schlotheim, E.F., 1820, Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt erläutert: Gotha, Germany, Becker, 437 p.Google Scholar
St. John, O.H., and Worthen, A.H., 1875, Descriptions of fossil fishes: Geological Survey of Illinois, v. 6, p. 245488.Google Scholar
St. John, O.H. and Worthen, A.H., 1883, Description of fossil fishes; a partial revision of the Cochliodonts and Psammodonts: Geological Survey of Illinois, v. 7, p. 55264.Google Scholar
Thompson, T.L., 2001, Lexicon of stratigraphic nomenclature in Missouri: Missouri Department of Natural Resources, Division of Geology and Land Survey, Report of Investigations 73, 371 p.Google Scholar
Wainwright, P.C., and Richard, B.A., 1995, Predicting patterns of prey use from morphology of fishes: Environmental Biology of Fishes, v. 44, p. 97113.CrossRefGoogle Scholar
Weigelt, J., 1930, Wichtige Fischreste aus dem Mansfelder Kupferschiefer: Leopoldina, v. 6, p. 601624.Google Scholar
Whitenack, L.B., Simkins, D.C., and Motta, P. J., 2011, Biology meets engineering: the structural mechanics of fossil and extant shark teeth: Journal of Morphology, v. 272, p. 169179, https://doi.org/10.1002/jmor.10903.CrossRefGoogle ScholarPubMed
Zangerl, R., 1981, Chondrichthyes 1. Paleozoic Elasmobranchii, in Schultze, H.-P., ed., Handbook of Paleoichthyology, v. 3A: Stuttgart, Gustav Fischer Verlag. p. 1115.Google Scholar