Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-20T17:24:10.380Z Has data issue: false hasContentIssue false

New taxa and revised stratigraphic distribution of the crinoid fauna from Anticosti Island, Québec, Canada (Late Ordovician-early Silurian)

Published online by Cambridge University Press:  31 May 2019

William I. Ausich
Affiliation:
School of Earth Sciences, 155 South Oval Mall, The Ohio State University, Columbus, OH 43210 USA 〈[email protected]
Mario E. Cournoyer
Affiliation:
Musée de paléontologie et de l'évolution, 541 Congrégation Street, Montréal, Québec Canada H3K 2J1 〈[email protected]

Abstract

End-Ordovician extinctions had a profound effect on shallow-water benthic communities, including the Crinoidea. Further, recovery after the extinctions resulted in a macroevolutionary turnover in crinoid faunas. Anticosti Island is the most complete Ordovician-Silurian boundary section recording shallow-water habitats. Both new taxa and changes in Anticosti Island stratigraphic nomenclature are addressed herein. New taxa include Becsciecrinus groulxi n. sp., Bucucrinus isotaloi n. sp., Jovacrinus clarki n. sp., Plicodendrocrinus petryki n. sp., Plicodendrocrinus martini n. sp., Thalamocrinus daoustae n. sp., and Lateranicrinus saintlaurenti n. gen. n. sp. The status of Xenocrinus rubus as a boundary-crossing taxon is confirmed, range extensions of several taxa are documented, and the distribution of crinoids with the revised stratigraphic nomenclature is documented.

UUID: http://zoobank.org/19613a44-ec69-47d7-88ab-fcf88ba771f0.

Type
Articles
Copyright
Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelin, N.P., 1878, Iconographia Crinoideorum in stratis Sueciae Siluricis fossilium: Holmiae, Samson and Wallin, 62 p.Google Scholar
Ausich, W.I., 1984a, Calceocrinids from the Early Silurian (Llandoverian) Brassfield Formation of southwestern Ohio: Journal of Paleontology, v. 58, p. 11671185.Google Scholar
Ausich, W.I., 1984b, The genus Clidochirus from the Early Silurian of Ohio (Crinoidea, Llandoverian): Journal of Paleontology, v. 58, p. 13411346.Google Scholar
Ausich, W.I., 1985, New crinoids and revision of the superfamily Glyptocrinacea (Early Silurian, Ohio): Journal of Paleontology, v. 59, p. 793808.Google Scholar
Ausich, W.I., 1986a, Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio): Journal of Paleontology, v. 60, p. 84106.Google Scholar
Ausich, W.I., 1986b, Early Silurian inadunate crinoids (Brassfield Formation, Ohio): Journal of Paleontology, v. 60, p. 719735.Google Scholar
Ausich, W.I., 1986c, New camerate crinoids of the Suborder Glyptocrinina from the Lower Silurian Brassfield Formation (southwestern Ohio): Journal of Paleontology, v. 60, p. 887897.Google Scholar
Ausich, W.I., 1987, Brassfield Compsocrinina (Lower Silurian crinoids) from Ohio: Journal of Paleontology, v. 61, p. 552562.Google Scholar
Ausich, W.I., 1998, Phylogeny of Arenig to Caradoc crinoids (Phylum Echinodermata) and suprageneric classification of the Crinoidea: The University of Kansas Paleontological Contributions, n.s., v. 9, 36 p.Google Scholar
Ausich, W.I., and Baumiller, T.K., 1993, Column regeneration in an Ordovician crinoid (Echinodermata): paleobiologic implications: Journal of Paleontology, v. 67, p. 10681070.Google Scholar
Ausich, W.I., and Copper, P., 2010, The Crinoidea of Anticosti Island, Québec (Late Ordovician to Early Silurian): Palaeontographica Canadiana, v. 29, 157 p.Google Scholar
Ausich, W.I., and Deline, B., 2012, Macroevolutionary transitions in crinoids following the Late Ordovician extinction event (Ordovician to Early Silurian): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 361–362, p. 3848.Google Scholar
Ausich, W.I., and Wilson, M.A., 2016, Llandovery (early Silurian) crinoids from Hiiumaa Island, western Estonia: Journal of Paleontology, v. 90, p. 11391147.Google Scholar
Ausich, W.I., Kammer, T.W., and Baumiller, T.K., 1994, Demise of the middle Paleozoic crinoid fauna: Paleobiology, v. 20, p. 345361.Google Scholar
Ausich, W.I., Brett, C.E., Hess, H., and Simms, M.J., 1999, Crinoid form and function, in Hess, H., Ausich, W.I., Brett, C.E., and Simms, M.J., Fossil Crinoids: Cambridge, UK, Cambridge University Press, p. 330.Google Scholar
Ausich, W.I., Kammer, T.W., Rhenberg, E.C., and Wright, D.F., 2015a, Frontiers in Paleontology: early phylogeny of crinoids within the Pelmatozoan clade: Palaeontology, v. 58, p. 937952.Google Scholar
Ausich, W.I., Peter, M.E., and Ettensohn, F.R., 2015b, Echinoderms from the lower Silurian Brassfield Formation of east-central Kentucky: Journal of Paleontology, v. 89, p. 245256.Google Scholar
Barnes, C.R., 1988, Stratigraphy and paleontology of the Ordovician-Silurian boundary interval, Anticosti Island, Québec, Canada: British Museum Natural History Bulletin (Geology), v. 43, p. 195219.Google Scholar
Baumiller, T.K., 1990, Non-predatory drilling in Mississippian crinoids by platyceratid gastropods: Palaeontology, v. 33, p. 743748.Google Scholar
Baumiller, T.K., 1993, Crinoid stalks as cantilever beams and the nature of stalk ligament: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 190, p. 115133.Google Scholar
Baumiller, T. K., 2002, Multi-snail infestation of Devonian crinoids and the nature of platyceratid-crinoid interactions: Acta Palaeontologica Polonica, v. 47, p. 133139.Google Scholar
Baumiller, T.K., and Gahn, F.J., 2003, Predation on crinoids, in Kelley, P.H., Kowalewski, M., and Hanson, T.A., eds., Predator-Prey Interactions in the Fossil Record: New York, Kluwer/Plenum Publishers, p. 263278.Google Scholar
Baumiller, T.K., Gahn, F.J., and Savill, J., 2004, New data and interpretations of the crinoid-platyceratid relationship, in Heinzeller, T., and Nebelsick, J.H., eds., Echinoderms: Munchen, London, Talyor and Francis, p. 393398.Google Scholar
Billings, E., 1859, On the Crinoideae of the Lower Silurian rocks of Canada: Canadian Organic Remains, Decade 4, Geological Survey of Canada, 72 p.Google Scholar
Bolton, T.E., 1961, Ordovician and Silurian formations of Anticosti Island, Quebec: Geological Survey of Canada Paper, no. 71-19, 45 p.Google Scholar
Bowsher, A.L., 1955, Origin and adaptation of platyceratid gastropods: University of Kansas Paleontological Contributions, Mollusca Article 5, 11 p.Google Scholar
Bronn, H.G., and Roemer, F. (C.F.), 1851–56, Lethaea Geognostica oder Abbildung und Beschreibung der für die Gebirgs-Formationen bezeichnendsten Versteinerungen. Dritte stark vermehrte Auflage bearbeitet von H.G. Bronn and F. Roemer, Erster Band. 1. Übersichten, I. Theil. Systematische Übersicht der Fossilien; Schlüssel-Tabellen; Register, von H.G. Bronn. 2. Palaeo-Lethaea. II. Theil. Kohlen-Periode (Silur-, Devon-, Kohlen-, und Zechstein-Formation), von F. Roemer, 788 p., Zweiter Band (1851–52). 3. Meso-Lethaea. III. Theil, Trias-Periode; IV. Theil, Oolithen-Periode; V. Theil, Kreide-Periode: Stuttgart, E Schweizerbart, 412 p.Google Scholar
Brower, J.C., 1995, Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota: Journal of Paleontology, v. 69, p. 939960.Google Scholar
Buggisch, W., Joachimski, M.M., Lehnert, O., Bergström, S.M., Repetski, J. E., and Webers, G., 2010, Did intense volcanism trigger the first Late Ordovician icehouse?: Geology, v. 38, p. 327330.Google Scholar
Cocks, L.R.M., and Copper, P., 1981, The Ordovician-Silurian boundary at the eastern end of Anticosti Island: Canadian Journal of Earth Sciences, v. 18, p. 10291034.Google Scholar
Cole, S.R., 2017, Phylogeny and morphologic evolution of the Ordovician Camerata (Class Crinoidea, Phylum Echinodermata): Journal of Paleontology, 91, p. 815828.Google Scholar
Copper, P., 1989, Upper Ordovician and Lower Silurian reefs of Anticosti Island, Quebec: Canadian Society of Petroleum Geologists Memoir, v. 13, p. 271276.Google Scholar
Copper, P., 2001, Reefs during the multiple crises towards the Ordovician-Silurian boundary: Anticosti Island, eastern Canada, and worldwide: Canadian Journal of Earth Sciences, v. 38, p. 153171.Google Scholar
Copper, P., Jin, J., and Desrochers, A., 2013, The Ordovician-Silurian boundary (late Katian–Hirnantian) of western Anticosti Island: revised stratigraphy and benthic megafauna correlations: Stratigraphy, v. 19, p. 213227.Google Scholar
Deline, B., Ausich, W.I., and Brett, C.E., 2012, Comparing taxonomic and geographic scales in the morphologic disparity of Ordovician through Early Silurian Laurentian crinoids: Paleobiology, v. 38, p. 538553.Google Scholar
Desrochers, A., Farley, C., Achab, A., and Asselin, E., 2008, A high-resolution stratigraphic model to resolve the longstanding issues relative to the correlation and interpretation of the O/S boundary on Anticosti Island, Canada, in Kröger, B., and Servais, T., eds., Palaeozoic Climates–International Congress: Closing Meeting of the International Geoscience Programme 503 “Ordovician Palaeogeography and Palaeoclimate,” Abstracts: Lille, Université of Lille, p. 32.Google Scholar
Desrochers, A., Farley, C., Achab, A., Asselin, E., and Riva, J.F., 2010, A far-field record of the end Ordovician glaciations: the Ellis Bay Formation, Anticosti Island, Eastern Canada: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 296, p. 248263.Google Scholar
Donovan, S.K., 1993, A Rhuddanian (Silurian, Llandovery) pelmatozoan fauna from south-west Wales: Geological Journal, v. 28, p. 119.Google Scholar
Donovan, S.K., Widdison, R.E., Lewis, D.N., and Fearnhead, F.E., 2010, The British Silurian Crinoidea, part 2: addendum to part 1 and Cladida: Palaeontographical Society, v. 164, p. 47133.Google Scholar
Eckert, J.D., 1984, Early Llandovery crinoids and stelleroids from the Cataract Group (Lower Silurian), southern Ontario, Canada: Royal Ontario Museum Life Sciences Contributions, v. 137, 83 p.Google Scholar
Eckert, J.D., 1990, The Early Silurian myelodactylid crinoid Eomyelodactylus Foerste: Journal of Paleontology, v. 64, p. 135141.Google Scholar
Fearnhead, F.E., and Donovan, S.K., 2007, A cladid crinoid (Echinodermata) from the Llandovery (Lower Silurian) of the Girvan district, SW Scotland: Scottish Journal of Geology, v. 43, p. 7482.Google Scholar
Gahn, F.J, and Baumiller, T.K., 2003, Infestation of Middle Devonian (Givetian) camerate crinoids by platyceratid gastropods and its implications for the nature of their biotic interaction: Lethaia, v. 36, p. 7182.Google Scholar
Gahn, F.J, and Baumiller, T.K., 2006, Using platyceratid gastropod behavior to test functional morphology: Historical Geology, v. 18, p. 397404.Google Scholar
Goldfuss, G.A., 1826–44, Petrefacta Germaniae, tam ea, Quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhelmiae Rhenanea, serventur, quam alia quaecunque in Museis Hoeninghusiano Muensteriano aliisque, extant, iconibus et descriiptionns illustrata.—Abbildungen und Beschreibungen der Petrefacten Deutschlands und der Angränzende Länder, unter Mitwirkung des Hern Grafen Georg zu Münster, herausgegeben von August Goldfuss: v. 1 (1826–1833), Divisio prima. Zoophytorum reliquiae, p. 1–114; Divisio secunda. Radiariorum reliquiae, p. 115–221 [Echinodermata]; Divisio tertia. Annulatorium reliquiae, p. 222–242; v. 2 (1834–40), Divisio quarta. Molluscorum acephalicorum reliquiae. I. Bivalvia, p. 65–286; II. Brachiopoda, p. 287–303; III. (1841–44), Divisio quinta. Molluscorum gasteropodum reliquiae, p. 1–121; atlas of plates, 1–199, Düsseldorf, Arnz & Co.Google Scholar
Guensburg, T.E., and Sprinkle, J., 2000, Ecologic radiation of Cambro-Ordovician echinoderms, in Zhuravlev, A.Y., and Riding, R., eds., Ecology of the Cambrian Radiation: New York, Columbia University Press, p. 428444.Google Scholar
Hall, J., 1852, Palaeontology of New York, v. 2, containing descriptions of the organic remains of the lower middle division of the New-York system: Natural History of New York, New York, D. Appleton & Co. and Wiley & Putnam; Boston, Gould, Kendall, & Lincoln, v. 6, 362 p.Google Scholar
Hall, J., 1866, Descriptions of new species of Crinoidea and other fossils from the Lower Silurian strata of the age of the Hudson-River Group and Trenton Limestone: Albany, 17 p. [preprint]Google Scholar
Herrmann, A.D., Patkowsky, M.E., and Pollard, D., 2004, The impact of paleogeography, pCO2, poleward ocean heat transfer, and sea level change on global cooling during the Late Ordovician: Palaeogeography, Palaeoecology, and Palaeoclimatology, v. 206, p. 5974.Google Scholar
International Commission of Zoological Nomenclature, 1999, International Code of Zoological Nomenclature, fourth edition: London, The International Trust for Zoological Nomenclature 1999, 306 p.Google Scholar
Jell, P.A., 1999, Silurian and Devonian crinoids from central Victoria: Memoirs of the Queensland Museum, v. 43, p. 1114 p.Google Scholar
Jell, P.A., and Theron, J.N., 1999, Early Devonian echinoderms from South Africa: Memoirs of the Queensland Museum, v. 43, p. 115200.Google Scholar
Jin, J., and Copper, P., 2008, Response of brachiopod communities to environmental change during the Late Ordovician mass extinction interval, Anticosti Island, Eastern Canada: Fossils and Strata, v. 54, p. 4151.Google Scholar
Koninck, L.G. de, and Le Hon, H., 1854, Recherches sur les crinoïdes du terrain carbonifère de la Belgique: Académie Royal de Belgique, Memoir, v. 28, no. 3, 215 p.Google Scholar
Kump, L.R., Arthur, M.A., Patzkowsky, M.E., Gibbs, M.T., Pinkus, D.S., and Sheehan, P.M., 1999, A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 152, p. 173187.Google Scholar
Lane, N.G., and Moore, R.C., 1978, Suborder Cyathocrinina, in Moore, R.C., and Teichert, K. eds., Treatise on Invertebrate Paleontology, Echinodermata, Pt. T(2). Geological Society of America and University of Kansas Press, Boulder, CO and Lawrence, KS, p. T578T607.Google Scholar
Lefebvre, B., Sumrall, C.D., Shroat-Lewis, R.A., Reich, M., Webster, G.D., Hunter, A.W., Nardin, E., Rozhnov, S.V., Guensburg, T.E., and Touzeau, A., 2013, Palaeobiogeography of Ordovician echinoderms: Geological Society, London, Memoirs, v. 38, p. 173198.Google Scholar
Lefebvre, V., Servais, T., François, L., and Averbuch, O., 2010, Did a Katian large igneous province trigger the Late Ordovician glaciation?: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 296, p. 309310.Google Scholar
Long, D.G.F., and Copper, P., 1987, Stratigraphy of the Upper Ordovician upper Vauréal and Ellis Bay formations, eastern Anticosti Island, Québec: Canadian Journal of Earth Sciences, v. 24, p. 18071820.Google Scholar
McIntosh, G.C., and Brett, C.E., 1988, Occurrence of the cladid inadunate crinoid Thalamocrinus in the Silurian (Wenlockian) of New York and Ontario: Royal Ontario Museum, Life Sciences Contributions, v. 149, 17 p.Google Scholar
Meek, F.B., 1871, On some new Silurian (Ordovician) crinoids and shells: American Journal of Science, ser. 3, v.1, p. 295299.Google Scholar
Meyer, D.L., and Ausich, W.I., 1983, Biotic interactions among Recent and among fossil crinoids, Chapter 9, in Tevesz, M.J.S., and McCall, P.L., eds., Biotic Interactions in Recent and Fossil Benthic Communities: New York, Plenum Publishing Corporation, p. 337427.Google Scholar
Miller, J.S., 1821, A Natural History of the Crinoidea, or Lily-shaped Animals; with observations on the genera, Asteria, Euryale, Comatula and Marsupites: Bristol, England, Bryan & Co., 150 p.Google Scholar
Miller, S.A., 1881, Description of some new and remarkable crinoids and some other fossils of the Hudson River Group and notice of Strotocrinus bloomfieldensis: Journal of the Cincinnati Society of Natural History, v. 4, p. 6977.Google Scholar
Miller, S.A., 1883, The American Palaeozoic Fossils: a catalogue of the genera and species, with names of authors, dates, places of publication, groups of books in which found, and the etymology and signification of the words, and an introduction devoted to the stratigraphical geology of the Palaeozoic rocks, 2nd ed.: Cincinnati, Ohio, published by the author, p. 247–334.Google Scholar
Miller, S.A., 1890, The structure, classification, and arrangement of American Palaeozoic crinoids into families: American Geologist, v. 6, p. 275286, 340–357.Google Scholar
Miller, S.A., and Gurley, W.F.E., 1895, New and interesting species of Palaeozoic fossils: Illinois State Museum Bulletin, v. 7, 89 p.Google Scholar
Moore, R.C., and Laudon, L.R., 1943, Evolution and classification of Paleozoic crinoids: Geological Society of America Special Paper, v. 46, 151 p.Google Scholar
Nardin, E., Goddéris, Y., Donnadieu, Y, Le Hir, G., Blakely, R.C., Pucéa, E., and Artez, M., 2011, Modeling the early Paleozoic long-term climate trend: Geological Society of America Bulletin, v. 123, p. 11811192.Google Scholar
Oji, T., and Amemiya, S., 1998, Survival of crinoid stalk fragments and its taphonomic implications: Paleontological Research, v. 2, p. 6770.Google Scholar
Peters, S.E., and Ausich, W.I., 2008, A sampling-adjusted macroevolutionary history for Ordovician–Early Silurian crinoids: Paleobiology, v. 3, p. 104116.Google Scholar
Petryk, A.A., 1981, Stratigraphy, sedimentology, and paleogeography of the Upper Ordovician–Lower Silurian of Anticosti Island, Québec, in Lespérance, P.J., ed., Subcommission on Silurian Stratigraphy, Ordovician-Silurian Boundary Working Group: Field meeting Anticosti-Gaspé, Québec, Université de Montréal, v. 2, p. 1039.Google Scholar
Phillips, J., 1839, Chapter 48. Encrinites and zoophytes of the Silurian System, in Murchison, R.T., The Silurian System: London, John Brown, p. 670675.Google Scholar
Richardson, J., 1857, Report of the year 1856: Canadian Survey of Canada Report of Progress for the years 1853-54-55-56, p. 191245.Google Scholar
Roemer, C.F., 1855, in Bronn, H.G., and Roemer, C.F. Lethaea Geognostica, oder Abblidung und Beschreibung der für die Gebirgs-Formationen beziechnendsten Versteinerungen 1851–1856, 3rd ed.: Stuttgart, E. Schweizerbart, v. 2, 788 p.Google Scholar
Rowley, R.R., 1904, The Echinodermata of the Missouri Silurian and a new brachiopod: American Geologist, v. 34, p. 269282.Google Scholar
Schuchert, C., and Twenhofel, W.H., 1910, Ordovicic–Siluric section of the Mingan and Anticosti islands, Gulf of St. Lawrence: Geological Society of America Bulletin, v. 21, p. 677716.Google Scholar
Sepkoski, J.J. Jr., 1996, Patterns of Phanerozoic extinction: a perspective from global databases, in Walliser, O.H., ed., Global Events and Event Stratigraphy in the Phanerozoic: Berlin, Springer-Verlag, p. 3151.Google Scholar
Shaviv, N.J., and Veizer, J., 2003, Celestial drive of Phanerozoic climate?: GSA Today, v. 13/7, p. 410.Google Scholar
Springer, F., 1926, American Silurian Crinoids: Smithsonian Institution Publication, v. 2872, 239 p.Google Scholar
Springer, F., 1928, Echinodermata, in Twenhofel, W.A., Geology of Anticosti Island: Canada Geological Survey Memoir, v. 154 (1927), 481 p.Google Scholar
Sprinkle, J., and Guensburg, T.E., 2004, Crinozoan, blastozoan, echinozoan, asterozoan, and homalozoan echinoderms, in Webby, D.B., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 266280.Google Scholar
Twenhofel, W.H., 1928, Geology of Anticosti Island: Geological Survey of Canada Memoirs, v. 154, 481 p.Google Scholar
Ubaghs, G., 1978, Skeletal morphology of fossil crinoids, in Moore, R.C., and Teichert, K. eds., Treatise on Invertebrate Paleontology, Echinodermata, Pt. T(2): Geological Society of America and University of Kansas Press, Boulder, CO and Lawrence, KS, p. T58T216.Google Scholar
Wachsmuth, C., and Springer, F., 1880–1886, Revision of the Palaeocrinoidea: Proceedings of the Academy of Natural Sciences of Philadelphia Pt. I. The families Ichthyocrinidae and Cyathocrinidae (1880), p. 226–378 (separate repaged p. 1–153). Pt. II. Family Sphaeroidocrinidae, with the sub-families Platycrinidae, Rhodocrinidae, and Actinocrinidae (1881), p. 177–411 (separate repaged, p. 1–237). Pt. III, Sec. 1. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions (1885), p. 225–364 (separate repaged, 1–138). Pt. III, Sec. 2. Discussion of the classification and relations of the brachiate crinoids, and conclusion of the generic descriptions (1886), p. 64–226 (separate repaged to continue with section 1, 139–302).Google Scholar
Webby, G.D., Paris, F., Droser, M.L., and Percival, I.G., 2004, The Great Ordovician Biodiversification Event: New York, Columbia University Press, 484 p.Google Scholar
Webster, G.D., and Maples, C.G., 2008, Cladid crinoid radial facets, brachials, and arm appendages: a terminology solution for studies of lineage, classification, and paleoenvironment, in Ausich, W.I., and Webster, G.D., eds., Echinoderm Paleobiology: Bloomington, IN, Indiana University Press, p. 196226.Google Scholar
Webster, G.D., and Webster, D.W., 2013, Bibliography and index of Paleozoic crinoids, coronoids, and hemistreptocrinids, 1758–2012. http://crinoids.azurewebsites.net/ (Oct. 2018).Google Scholar
Wright, D.F., 2017, Bayesian estimation of fossil phylogenies and the evolution of early to middle Paleozoic crinoids (Echinodermata): Journal of Paleontology, v. 91, p. 799814. doi: 10.10.17/jpa.2-16.141Google Scholar
Wright, D.F., Ausich, W.I., Cole, S.R., Peter, M.E., and Rhenberg, E.C., 2017, Phylogenetic taxonomy and classification of the Crinoidea (Echinodermata): Journal of Paleontology, v. 91, p. 829846. doi 10.1917/jpa.2016.142Google Scholar
Zittel, K.A. von., 1876–80, Handbuch der Palaeontologie, v. 1, Palaeozoologie: München, Leipzig, R. Oldenbourg, (1879), 765 p. [Echinoderms, p. 308–560]Google Scholar
Zou, C., Qui, Z., Poulton, S.W., Dong, D., Wang, H., Chen, D., Lu, B., Shi, Z., and Tao, H., 2018, Ocean euxinia and climate change “double whammy” drove Late Ordovician mass extinction: Geology, v. 46, p. 533538.Google Scholar