Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T17:08:19.382Z Has data issue: false hasContentIssue false

New cynodonts (Therapsida, Eucynodontia) from the Late Triassic of India and their significances

Published online by Cambridge University Press:  16 November 2020

Mohd Shafi Bhat*
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur721302, India , Current address: Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7701, South Africa
Sanghamitra Ray
Affiliation:
Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur721302, India ,
P. M. Datta
Affiliation:
Greenwood Housing Cooperative Society Limited, 315B Upen Banerjee Road, Kolkata700060, India
*
*Corresponding author.

Abstract

The Upper Triassic Tiki Formation of India has yielded several new cynodont taxa, which are described on the basis of multiple isolated teeth and a jaw fragment. A new species of dromatheriid, Rewaconodon indicus, is defined by a tri- and tetracuspid asymmetric crown, long anterior edge of the major cusp a, cingular cusps d and f, and marked constriction at the crown-root junction. Another new dromatheriid, Inditherium floris n. gen. n. sp., is characterized by a broad, flower-shaped pentacuspid crown, multiple cingular cusps, and a weak lingual cingulum is also described from the same horizon. In addition, a new mammaliamorph taxon, Tikiodon cromptoni n. gen. n. sp., is established on a tooth specimen, which has a shovel-shaped crown, three closely spaced main cusps, a pronounced lingual cingulum with multiple cingular cusps, and a root of incomplete root bifurcation. Such a tooth morphology occupies an intermediate position between the non-mammalian cynodonts and the early mammals, as is evident from the co-occurrence of various cynodont dental morphotypes in the Tiki Formation. Moreover, Late Triassic cynodonts occurred along narrow belts demarcated by paleolatitudes, though the Indian fauna shows both Laurasian and Gondwanan affinities.

UUID: http://zoobank.org/c2c575ad-ee23-4f33-8a30-661c548a5b17

Type
Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdala, F., 2019, Permo-Jurassic cynodonts: the early road to mammalness: Reference Module in Earth Systems and Environmental Sciences, Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.12020-2.Google Scholar
Abdala, F., and Gaetano, L.C., 2018, The Late Triassic record of cynodonts: time of innovations in the mammalian lineage, in Tanner, L., ed., The Late Triassic World: Earth in a Time of Transition: Cham, Springer, p. 407445.CrossRefGoogle Scholar
Abdala, F., and Ribeiro, A.M., 2010, Distribution and diversity patterns of Triassic cynodonts (Therapsida, Cynodontia) in Gondwana: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 286, p. 202217.CrossRefGoogle Scholar
Abdala, F., and Smith, R.M.H, 2009, A Middle Triassic cynodont fauna from Namibia and its implications for biogeography of Gondwana: Journal of Vertebrate Paleontology, v. 29, p. 837851.CrossRefGoogle Scholar
Abdala, F., Jasinoski, S.C., and Fernandez, V., 2013, Ontogeny of the Early Triassic cynodont Thrinaxodon liorhinus (Therapsida): dental morphology and replacement: Journal of Vertebrate Paleontology, v. 33, p. 14081431.CrossRefGoogle Scholar
Abdala, F., Gaetano, L.C., Martinelli, A.G., Soares, M.B., Hancox, P.J., and Rubidge, B.S., 2020, Non-mammalian cynodonts from western Gondwana and the significance of Argentinean forms in enhancing understanding of the group: Journal of South American Earth Sciences, v. 104, 102884. https://doi.org/10.1016/j.jsames.2020.102884.CrossRefGoogle Scholar
Bandyopadhyay, S., 1999, Gondwana vertebrate faunas of India: Proceedings of the Indian National Science Academy, v. 65A, p. 285313.Google Scholar
Bandyopadhyay, S., 2011, Non-marine Triassic vertebrates of India, in Calvo, J.O., Porfiri, J., Gonzalez Riga, B., and Santos, D.D., eds., Paleontología y dinosaurios desde América Latina: EDIUNC, Editorial de la Universidad Nacional de Cuyo, Mendoza, Argentina, p. 3346.Google Scholar
Bandyopadhyay, S., and Ray, S., 2020, Gondwana vertebrate faunas of India: their diversity and intercontinental relationships: Episodes, v. 43, p. 438460.CrossRefGoogle Scholar
Bandyopadhyay, S., and Sengupta, D.P., 1999, Middle Triassic vertebrates of India: Journal of African Earth Sciences, v. 29, p. 233241.CrossRefGoogle Scholar
Bandyopadhyay, S., and Sengupta, D.P., 2006, Vertebrate faunal turnover during the Triassic-Jurassic transition: an Indian scenario, in Harris, J.D., Lucas, S.G., Spielmann, J.A., Lockley, M.G., Milner, A.R.C., and Kirkland, J.I., eds., The Triassic-Jurassic Terrestrial Transition: New Mexico Museum of Natural History and Science Bulletin, v. 37, p. 7785.Google Scholar
Battail, B., 2001, A short review of studies on cynodonts: Asociación Paleontológica Argentina. Publicación Especial 7 VII International Symposium on Mesozoic Terrestrial Ecosystems, Buenos Aires, p. 2938.Google Scholar
Bhat, M.S., 2017, Techniques for systematic collection and processing of vertebrate microfossils from their host mudrocks: a case study from the Upper Triassic Tiki Formation of India: Journal of the Geological Society of India, v. 89, p. 369374.CrossRefGoogle Scholar
Bhat, M.S., 2018, A new assemblage of vertebrate microfossils from India: a window on Late Triassic biodiversity and paleobiogeography [PhD thesis]: Kharagpur, India, Indian Institute of Technology 237 pp.Google Scholar
Bhat, M.S., and Ray, S., 2020, A record of new lungfishes (Osteichthyes: Dipnoi) from the Carnian (Upper Triassic) of India: Historical Biology, v. 32, p. 428437.CrossRefGoogle Scholar
Bhat, M.S., Ray, S., and Datta, P.M., 2018a, A new hybodont shark (Chondrichthyes, Elasmobranchii) from the Upper Triassic Tiki Formation of India with remarks on its dental histology and biostratigraphy: Journal of Paleontology, v. 92, p. 221239.CrossRefGoogle Scholar
Bhat, M.S., Ray, S., and Datta, P.M., 2018b, A new assemblage of freshwater sharks (Chondrichthyes: Elasmobranchii) from the Upper Triassic of India: Geobios, v. 51, p. 269283.CrossRefGoogle Scholar
Bonaparte, J.F., and Barberena, M.C., 1975, A possible mammalian ancestor from the Middle Triassic of Brazil (Therapsida-Cynodontia): Journal of Paleontology, v. 49, p. 931936.Google Scholar
Bonaparte, J.F., Martinelli, A.G., Schultz, C.L., and Rubert, R., 2003, The sister group of mammals: small cynodonts from the Late Triassic of southern Brazil: Revista Brasileira de Paleontologia, v. 5, p. 527.Google Scholar
Bonaparte, J.F., Martinelli, A.G., and Schultz, C.L., 2005, New information on Brasilodon and Brasilitherium (Cynodontia, Probainognathia) from the Late Triassic of southern Brazil: Revista Brasileira de Paleontologia, v. 8, p. 2546.CrossRefGoogle Scholar
Botha, J., Abdala, F., and Smith, R., 2007, The oldest cynodont: new clues on the origin and early diversification of the Cynodontia: Zoological Journal of the Linnean Society, v. 149, p. 477492.CrossRefGoogle Scholar
Broom, R. 1905, Notice of some new fossil reptiles from the Karroo beds of South Africa: Records of the Albany Museum, v. 1, p. 331337.Google Scholar
Butler, R.J., and Sigogneau-Russell, D., 2016, Diversity of triconodonts in the Middle Jurassic of Great Britain: Palaeontologia Polonica, v. 67, p. 3565.Google Scholar
Butler, R.J., Sigogneau-Russell, D., and Ensom, P.C., 2012, Possible persistence of the morganucodontans in the Lower Cretaceous Purbeck Limestone Group (Dorset, England): Cretaceous Research, v. 33, p. 135145.CrossRefGoogle Scholar
Chatterjee, S., 1982, A new cynodont reptile from the Triassic of India: Journal of Paleontology, v. 56, p. 203214.Google Scholar
Chatterjee, S., Scotese, C.R., and Bajpai, S., 2017, The restless Indian plate and its epic voyage from Gondwana to Asia: its tectonic, paleoclimatic, and paleobiogeographic evolution: Geological Society of America Special Paper, v. 529, p. 1147.Google Scholar
Cifelli, R., Madsen, S.K., and Larson, M.E., 1996, Techniques for recovery and preparation of microvertebrate fossils: Oklahoma Geological Survey Special Publication, v. 96, p. 124.Google Scholar
Clemens, W.A., 1980, Rhaeto-Liassic mammals from Switzerland and West Germany: Zitteliana, v. 5, p. 5192.Google Scholar
Clemens, W.A., 2011, New morganucodontans from an Early Jurassic fissure filling in Wales (United Kingdom): Palaeontology, v. 54, p. 11391156.CrossRefGoogle Scholar
Close, R., Benson, R., Upchurch, P., and Butler, R.J., 2017, Controlling for the species-area effect supports constrained long-term Mesozoic terrestrial vertebrate diversification: Nature Communications 8, 15381 (2017). https://doi.org/10.1038/ncomms15381.CrossRefGoogle ScholarPubMed
Colbert, E.H., and Kitching, J.W., 1977, Triassic cynodont reptiles from Antarctica: American Museum Novitates, v. 2611, p. 130.Google Scholar
Constantino, P.J., Bush, M.B., Barani, A., and Lawn, B.R., 2016, On the evolutionary advantage of multi-cusped teeth: Journal of the Royal Society Interface, 13, 20160374. https://doi.org/10.1098/rsif.2016.0374.CrossRefGoogle ScholarPubMed
Crompton, A.W., 1964, A preliminary description of a new mammal from the Upper Triassic of South Africa: Proceedings of the Zoological Society of London, v. 142, p. 441452.CrossRefGoogle Scholar
Crompton, A.W., 1972, Evolution of the jaw articulation in cynodonts, in Joysey, K.A., and Kemp, T.S., eds., Studies in Vertebrate Evolution: Edinburgh, Oliver & Boyd, p. 231253.Google Scholar
Crompton, A.W., 1974, The dentition and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae: Bulletin of the British Museum (Natural History), Geology, v. 24, p. 397437.Google Scholar
Crompton, A.W., and Jenkins, F.A. Jr., 1968, Molar occlusion in Late Triassic mammals: Biological Reviews, v. 43, p. 427458.CrossRefGoogle ScholarPubMed
Crompton, A.W., and Luo, Z.-X., 1993, Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium, in Szalay, F.S., Novacek, M.J., and McKenna, M.C., eds., Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials: New York, Springer-Verlag, p. 3044.CrossRefGoogle Scholar
Cuny, G., 1993, Discovery of mammals in the Upper Triassic of the Jura (France), in Lucas, S.G., and Morales, M., eds., The Nonmarine Triassic: New Mexico Museum of Natural History and Science Bulletin 3, p. 9599.Google Scholar
Cuny, G., 2004, A Late Triassic cynodont from Holwell quarries (Somerset, England): Oryctos, v. 5, p. 6973.Google Scholar
Das, D.P., and Gupta, A., 2012, A new cynodont record from the Lower Triassic Panchet Formation, Damodar valley: Journal of the Geological Society of India, v. 79, p. 175180.CrossRefGoogle Scholar
Datta, D., Ray, S., and Bandyopadhyay, S., 2019a, Cranial morphology of a new phytosaur (Diapsida, Archosauria) from the Upper Triassic of India: implications for phytosaur phylogeny and biostratigraphy: Papers in Palaeontology. https://doi.org/10.1002/spp2.1292.CrossRefGoogle Scholar
Datta, D., Kumar, N., and Ray, S., 2019b, Taxonomic identification of isolated phytosaur (Diapsida, Archosauria) teeth from the Upper Triassic of India and their significances: Historical Biology. https://doi.org/10.1080/08912963.2019.1613652.Google Scholar
Datta, P.M., 2005, Earliest mammal with transversely expanded upper molar from the Late Triassic (Carnian) Tiki Formation, South Rewa Gondwana Basin, India: Journal of Vertebrate Paleontology, v. 25, p. 200207.CrossRefGoogle Scholar
Datta, P.M., and Das, D.P., 1996, Discovery of the oldest mammal from India: Indian Minerals, v. 50, p. 217222.Google Scholar
Datta, P.M., Das, D.P., and Luo, Z.X., 2004, A Late Triassic dromatheriid (Synapsida: Cynodontia) from India: Annals of the Carnegie Museum, v. 73, p. 7284.Google Scholar
Debuysschere, M., 2016, A reappraisal of Theroteinus (Haramiyida, Mammaliaformes) from the Upper Triassic of Saint-Nicolas-de-Port (France): PeerJ 4, e2592; https://doi.org/10.7717/peerj.2592.CrossRefGoogle Scholar
Debuysschere, M., Gheerbrant, E., and Allain, R., 2015, Earliest known European mammals: a review of the Morganucodonta from Saint- Nicolas-de-Port (Upper Triassic, France): Journal of Systematic Palaeontology, v. 13, p. 825855.CrossRefGoogle Scholar
Emmons, E., 1857, American Geology. Part IV: Albany, New York, Sprague and Co., 152 p.Google Scholar
Ezcurra, M.D., 2010, Biogeography of Triassic tetrapods: evidence for provincialism and driven sympatric cladogenesis in the early evolution of modern tetrapod lineages: Proceedings of the Royal Society B: Biological Sciences, v. 277, p. 25472552.Google Scholar
Fiorelli, L.E., Rocher, S., Martinelli, A.G., Ezcurra, M.D., Hechenleitner, E.M., and Ezpeleta, M., 2018, Tetrapod burrows from the Middle–Upper Triassic Chañares Formation (La Rioja, Argentina) and its palaeoecological implications: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 496, p. 85102.CrossRefGoogle Scholar
Fraser, N.C., Walkden, G.M., and Stewart, V., 1985, The first pre-Rhaetic therian mammal: Nature, v, 314, p. 161163.CrossRefGoogle Scholar
Gill, T., 1872, On the homologies of the shoulder girdle of the dipnoans and other fishes: Annals and Magazine of Natural History, v. 11, p. 173178.CrossRefGoogle Scholar
Godefroit, P., 1997, Reptilian, therapsid and mammalian teeth from the Upper Triassic of Varangéville (north-eastern France): Bulletin de l'Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, v. 67, p. 83102.Google Scholar
Godefroit, P., 1999, New traversodontid (Therapsida: Cynodontia) teeth from the Upper Triassic of Habay-la-Vieille (southern Belgium): Paläontologische Zeitschrift, v. 73, p. 385394.CrossRefGoogle Scholar
Godefroit, P., and Battail, B., 1997, Late Triassic cynodonts from Saint-Nicolas de- Port: Geodiversitas, v. 19, p. 567631.Google Scholar
Godefroit, P., Cuny, G., Delsate, D., and Roche, M., 1998, Late Triassic vertebrates from Syren (Luxembourg): Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, v. 210, p. 305343.CrossRefGoogle Scholar
Gurovich, Y., 2005, Bio-evolutionary aspects of Mesozoic mammals: description, phylogenetic relationships and evolution of the Gondwanatheria (Late Cretaceous and Paleocene of Gondwana) [Ph.D. dissertation]: Buenos Aires, Universidad Nacional de Buenos Aires, 621 p.Google Scholar
Hahn, G., Lepage, J.-C., and Wouters, G., 1984, Cynodontier-Zähne aus der Ober Trias von Medernach, Groosherzogtum Luxemburg: Bulletin de la Société Belge de Géologie, v. 93, p. 357373.Google Scholar
Hahn, G., Wild, R., and Wouters, G., 1987, Cynodontier-Zähne aus der Ober-Trias von Gaume (S - Belgien): Mémoires pour Servir à Explication des Cartes Géologique et Minières de la Belgique, v. 24, p. 133.Google Scholar
Heckert, A.B., 2004, Late Triassic microvertebrates from the Upper Triassic Chinle Group (Otischalkian–Adamanian: Carnian), southwestern U.S.A: New Mexico Museum of Natural History and Science Bulletin, v. 27, p. 1170.Google Scholar
Heckert, A.B., Mitchell, J.S., Schneider, V.P., and Olsen, P.E., 2012, Diverse new microvertebrate assemblage from the Upper Triassic Cumnock Formation, Sanford Subbasin, North Carolina, USA: Journal of Paleontology, v. 86, p. 368390.CrossRefGoogle Scholar
Hendrickx, C., Abdala, F., and Choiniere, J.N., 2019, A proposed terminology for the dentition of gomphodont cynodonts and dental morphology in Diademodontidae and Trirachodontidae: PeerJ 7, e6752. https://doi.org/10.7717/peerj.6752.CrossRefGoogle ScholarPubMed
Hendrickx, C., Gaetano, L.C., Choiniere, J., Mocke, H., and Abdala, F., 2020, A new gomphodont (Cynodontia: Cynognathia) with a peculiar postcanine dentition from the Middle/Late Triassic of Namibia: Journal of Systematic Palaeontology, v. 18, p. 16691706.CrossRefGoogle Scholar
Hopson, J.A., 1984, Late Triassic traversodont cynodonts from Nova Scotia and southern Africa: Palaeontologia Africana, v. 25, p. 181201.Google Scholar
Hopson, J.A., and Kitching, J.W., 1972, A revised classification of cynodonts (Reptilia; Therapsida): Palaeontologia Africana, v. 14, p. 7175.Google Scholar
Huttenlocker, A.K., Grossnickle, D.M., Kirkland, J.I., Schultz, J.A., and Luo, Z.-X., 2018, Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana: Nature, v. 558, p. 109112.CrossRefGoogle ScholarPubMed
Jenkins, F.A. Jr., and Parrington, F.R., 1976, The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium: Philosophical Transactions of the Royal Society of London, v. 273, p. 387431.Google ScholarPubMed
Jenkins, F.A. Jr., Crompton, A.W., and Downs, W.R., 1983, Mesozoic mammals from Arizona: new evidence on mammalian evolution: Science, v. 222, p. 12331235.CrossRefGoogle ScholarPubMed
Kammerer, C.F., 2016, A new taxon of cynodont from the Tropidostoma Assemblage Zone (Upper Permian) of South Africa, and the early evolution of Cynodontia: Papers in Palaeontology, v. 2, p. 387397.CrossRefGoogle Scholar
Kammerer, C.F., Flynn, J.J., Ranivoharimanana, L., and Wyss, A.R., 2008, New material of Menadon besairiei (Cynodontia: Traversodontidae) from the Triassic of Madagascar: Journal of Vertebrate Paleontology, v. 28, p. 445462.CrossRefGoogle Scholar
Kemp, T.S., 1982, Mammal-like Reptiles and the Origin of Mammals: New York, Academic Press, 363 p.Google Scholar
Kemp, T.S., 2005, The Origin and Evolution of Mammals: Oxford, Oxford University Press, 342 p.Google Scholar
Kermack, K.A., and Kermack, D.M., 1984, Evolution of Mammalian Characters: London, Croom Helm, 149 p.CrossRefGoogle Scholar
Kermack, K.A., Mussett, F., and Rigney, H.W., 1973, The lower jaw of Morganucodon: Zoological Journal of the Linnean Society, v. 53, p. 87175.CrossRefGoogle Scholar
Kermack, K.A., Mussett, F., and Rigney, H.W., 1981, The skull of Morganucodon: Zoological Journal of the Linnean Society, v. 71, p. 1158.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., Cifelli, R.L., and Luo, Z.-X., 2004, Mammals from the Age of Dinosaurs: New York, Columbia University Press, 630 p.CrossRefGoogle Scholar
Krause, D.W., Hoffmann, S., Hu, Y., Wible, J.R., Rougier, G.W., Kirk, E.C., Groenke, J.R., Rogers, R.R., Rossie, J.B., Schultz, J.A., Evans, A.R., von Koenigswald, W., and Rahantarisoa, L.J., 2020, Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity: Nature, v. 581, p. 421427.CrossRefGoogle ScholarPubMed
Kühne, W.G., 1949, On a triconodont tooth of a new pattern from a fissure-filling in South Glamorgan: Proceedings of the Zoological Society of London, v. 119, p. 345350.CrossRefGoogle Scholar
Liu, J., and Olsen, P.E., 2010, The phylogenetic relationships of Eucynodontia (Amniota: Synapsida): Journal of Mammalian Evolution, v. 17, p. 151176.CrossRefGoogle Scholar
Liu, J., and Sues, H.-D., 2010, Dentition and tooth replacement of Boreogomphodon (Cynodontia, Traversodontidae) from the Upper Triassic of North Carolina, USA: Vertebrata PalAsiatica, v. 48, p. 169184.Google Scholar
Lucas, S.G., and Luo, Z., 1993, Adelobasileus from the Upper Triassic of West Texas: the oldest mammal: Journal of Vertebrate Paleontology, v. 13, p. 309334.CrossRefGoogle Scholar
Lucas, S.G., and Oakes, W., 1988, A late Triassic cynodont from the American south west: Palaeontology, v. 31, p. 445449.Google Scholar
Lucas, S.G., Heckert, A.B., Harris, J.D., Seegis, D., and Wild, R., 2001, Mammal-like tooth from the Upper Triassic of Germany: Journal of Vertebrate Paleontology, v. 21, p. 397399.CrossRefGoogle Scholar
Lukic-Walther, M., Brocklehurst, N., Kammerer, C.F., and Fröbisch, J., 2019, Diversity patterns of nonmammalian cynodonts (Synapsida, Therapsida) and the impact of taxonomic practice and research history on diversity estimates: Paleobiology, v. 45, p. 5669.CrossRefGoogle Scholar
Luo, Z.-X., 1994, Sister taxon relationships of mammals and the transformations of the diagnostic mammalian characters, in Fraser, N.C., and Sues, H.-D., eds., In the Shadow of Dinosaurs: Early Mesozoic Tetrapods: Cambridge, New York, Cambridge University Press, p. 98128.Google Scholar
Luo, Z.-X., 2007, Transformation and diversification in the early mammalian evolution: Nature, v. 450, p. 10111019.CrossRefGoogle Scholar
Luo, Z.-X., and Martin, T., 2007, Analysis of molar structure and phylogeny of docodontan genera: Bulletin of Carnegie Museum of Natural History, v. 39, p. 2747.CrossRefGoogle Scholar
Luo, Z.-X., and Wu, X.-C., 1994, The small tetrapods of the lower Lufeng Formation, Yunnan, China, in Fraser, N.C., and Sues, H.-D., eds., In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods: Cambridge, Cambridge University Press, p. 251270.Google Scholar
Luo, Z.-X., Ji, Q., Wible, J.R., and Yuan, C.-X., 2003, An early Cretaceous tribosphenic mammal and metatherian evolution: Science, v. 302, p. 19341940.CrossRefGoogle ScholarPubMed
Luo, Z.-X., Kielan-Jaworowska, Z., and Cifelli, R.L., 2004, Evolution of dental replacement in mammals: Bulletin of Carnegie Museum of Natural History, v. 36, p. 159175.CrossRefGoogle Scholar
Luo, Z.-X., Meng, Q.-J., Grossnickle, D.M., Liu, D., Zhang, Y.-G., Neander, A.I., and Ji, Q., 2017, New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem: Nature, v. 548, p. 326329.CrossRefGoogle Scholar
Mannion, P.D., Benson, R.B.J., Carrano, M.T., Tennant, J.P., Judd, J., and Butler, R.J., 2015, Climate constrains the evolutionary history and biodiversity of crocodylians: Nature Communications 6, 8438 (2015). https://doi.org/10.1038/ncomms9438.Google Scholar
Martinelli, A.G., Bonaparte, J.F., Schultz, C.L., and Rubert, R., 2005, A new tritheledontid (Therapsida, Eucynodontia) from the Late Triassic of Rio Grande do Sul (Brazil) and its phylogenetic relationships among carnivorous non-mammalian eucynodonts: Ameghiniana, v. 42, p. 191208.Google Scholar
Martinelli, A.G., Soares, M.B. and Schwanke, C., 2016, Two new cynodonts (Therapsida) from the middle-early Late Triassic of Brazil and comments on South American probainognathians: PLoS One 11(10): e0162945. https://doi.org/10.1371/journal.pone.0162945.CrossRefGoogle ScholarPubMed
Martinelli, A.G., Eltink, E., Da-Rosa, Á.A.S., and Langer, M.C., 2017, A new cynodont from the Santa Maria formation, south Brazil, improves Late Triassic probainognathian diversity: Papers in Palaeontology, v. 3, p. 401423.CrossRefGoogle Scholar
Mocke, H.B., Gaetano, L.C., and Abdala, F., 2020, A new species of the carnivorous cynodont Chiniquodon (Cynodontia, Chiniquodontidae) from the Namibian Triassic: Journal of Vertebrate Paleontology, 39:6. https://doi.org/10.1080/02724634.2019.1754231.Google Scholar
Mukherjee, D., and Ray, S., 2014, A new Hyperodapedon (Archosauromorpha, Rhynchosauria) from the Upper Triassic of India: implications for rhynchosaur phylogeny: Palaeontology, v. 57, p. 12411276.CrossRefGoogle Scholar
Mukherjee, D., Ray, S., Chandra, S., Pal, S., and Bandyopadhyay, S., 2012, Upper Gondwana succession of the Rewa Basin, India: understanding the interrelationship of lithologic and stratigraphic variables: Journal of the Geological Society of India, v. 79, p. 563575.CrossRefGoogle Scholar
Nath, T.T., and Yadagiri, P., 2007, A new mammal-like reptile (Cynodontia) from the upper Triassic Maleri Formation of Pranhita-Godavari valley, Andhra Pradesh: Journal of the Geological Society of India, v. 69, p. 5760.Google Scholar
Oliveira, É.V., 2006, Re-evaluation of Therioherpeton cargnini Bonaparte & Barberena, 1975 (Probainognathia, Therioherpetidae) from the Upper Triassic of Brazil: Geodiversitas, v. 28, p. 447465.Google Scholar
O'Meara, R., and Asher, R., 2016, The evolution of growth patterns in mammalian versus nonmammalian cynodonts: Paleobiology, v. 42, p. 439464.CrossRefGoogle Scholar
Osborn, H.F., 1886, Observations upon the Upper Triassic mammals, Dromatherium and Microconodon: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 38, p. 359363.Google Scholar
Osborn, H.F., 1887, The Triassic Mammals, Dromatherium and Microconodon: Proceedings of the American Philosophical Society, v. 24, p. 109111.Google Scholar
Osborn, J.W., and Crompton, A.W., 1973, The evolution of mammalian from reptilian dentitions: Breviora, v. 399, p. 118.Google Scholar
Owen, R., 1861, Palaeontology, or a Systematic Summary of Extinct Animals and their Geological Relations: Edinburgh, Adam and Charles Black, 463 p.Google Scholar
Pacey, D., 1978, On a tetrapod assemblage from a Mesozoic fissure fill, South Wales [PhD thesis]: London, University College, 273 p.Google Scholar
Panciroli, E.L., Benson, R.B.J., and Luo, Z.-X., 2019, The mandible and dentition of Borealestes serendipitus (Docodonta) from the middle Jurassic of Skye, Scotland: Journal of Vertebrate Paleontology, e1621884. https://doi.org/10.1080/02724634.2019.1621884.CrossRefGoogle Scholar
Parrington, F.R., 1941, On two mammalian teeth from the lower Rhaetic of Somerset: Annals and Magazine of Natural History, Series 11, v. 8, p. 140144.CrossRefGoogle Scholar
Parrington, F.R., 1967, The origins of mammals: Advancements in Science, v. 24, p. 165173.Google Scholar
Parrington, F.R., 1971, On the Upper Triassic mammals: Philosophical Transactions of the Royal Society B, v. 261, p. 231272.Google Scholar
Rakshit, N., and Ray, S., 2020, Mortality dynamics and fossilisation pathways of a new metoposaurid-dominated multitaxic bonebed from India: a window into the Late Triassic vertebrate palaeoecosystem: Historical Biology. https://doi.org/10.1080/08912963.2020.1777550.CrossRefGoogle Scholar
Rakshit, N., Bhat, M.S., Ray, S., and Datta, P.M., 2018, First report of dinosaurian claws from the Late Triassic of India: Palaeoworld, v. 27, p. 179187.CrossRefGoogle Scholar
Rakshit, N., Bhat, M.S., Mukherjee, D., and Ray, S., 2019, First record of Mesozoic scroll coprolites: classification, characteristics, elemental composition and probable producers: Palaeontology, v. 62, p. 451471.CrossRefGoogle Scholar
Ray, S., 2015, A new Late Triassic traversodontid cynodont (Therapsida, Eucynodontia) from India: Journal of Vertebrate Paleontology, 35:3, e930472. https://doi.org/10.1080/02724634.2014.930472.CrossRefGoogle Scholar
Ray, S., Bhat, M.S., Mukherjee, D., and Datta, P.M., 2016, Vertebrate fauna from the Late Triassic Tiki Formation of India: new finds and their biostratigraphic implications: Palaeobotanist, v. 65, p. 4759.Google Scholar
Ray, S., Bhat, M.S., and Datta, P.M., 2019, First record of varied archosauriforms from the Upper Triassic of India based on isolated teeth, and their biostratigraphic implications: Historical Biology. https://doi.org/10.1080/08912963.2019.1609957.Google Scholar
Reed, S.J.B., 2005, Electron Probe Analysis and Scanning Electron Microscopy in Geology: Cambridge, Cambridge University Press, 189 p.CrossRefGoogle Scholar
Reisz, R.R., and Sues, H.-D., 2000, Herbivory in late Paleozoic and Triassic terrestrial vertebrates, in Sues, H.-D., ed., Evolution of Herbivory in Terrestrial Vertebrates: New York, Cambridge University Press, p. 941.CrossRefGoogle Scholar
Rigney, H.W., 1963, A specimen of Morganucodon from Yunnan: Nature, v. 197, p. 11221123.CrossRefGoogle Scholar
Rose, K.D., 2006, The Beginning of the Age of Mammals: Baltimore, The Johns Hopkins University Press, 431 p.Google Scholar
Rowe, T.B., 1988, Definition, diagnosis, and origin of Mammalia: Journal of Vertebrate Paleontology, v. 8, p. 241264.CrossRefGoogle Scholar
Rowe, T.B., 1993, Phylogenetic systematics and the early history of mammals, in Szalay, F.S., Novacek, M.J., and Mckenna, M.C., eds., Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials: New York, Springer-Verlag, p. 129145.CrossRefGoogle Scholar
Rubidge, B.S., and Sidor, C.A., 2001, Evolutionary patterns among Permo-Triassic therapsids: Annual Review of Ecology and Systematics, v. 32, p. 449480.CrossRefGoogle Scholar
Satsangi, P.P., 1987, The vertebrate faunas of the Permian and Lower Triassic sequence of India: Geological Survey of India Special Publication, v. 11, p. 165178.Google Scholar
Scotese, C.R., 2001, Atlas of Earth History: PALEOMAP Project: Arlington, University of Texas, 52 p.Google Scholar
Shapiro, M.D., and Jenkins, F.A., 2001, A cynodont from the Upper Triassic of East Greenland: tooth replacement and double-rootedness: Bulletin of the Museum of Comparative Zoology, Harvard University, v. 156, p. 4958.Google Scholar
Shubin, N.H., Crompton, A.W., Sues, H.-D., and Olsen, P., 1991, New fossil evidence on the sister-group of mammals and Early Mesozoic faunal distributions: Science, New Series, v. 251, p. 10631065.Google ScholarPubMed
Sidor, C.A., and Hancox, P.J., 2006, Elliotherium kersteni, a new tritheledontid from the lower Elliot Formation (Upper Triassic) of South Africa: Journal of Paleontology, v. 80, p. 333342.CrossRefGoogle Scholar
Sigogneau-Russell, D., and Hahn, G., 1994, Late Triassic microvertebrates from Central Europe, in Fraser, N.C., and Sues, H.-D., eds., In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods: Cambridge, Cambridge University Press, p. 197213.Google Scholar
Simpson, G.G., 1926a, Mesozoic Mammalia. V. Dromatherium and Microconodon: American Journal of Science, v. 12, p. 87108.CrossRefGoogle Scholar
Simpson, G.G., 1926b, Are Dromatherium and Microconodon mammals? Science, v. 63, p. 548549.CrossRefGoogle Scholar
Soares, M.B., Schultz, C.L., and Horn, B.L.D., 2011, New information on Riograndia guaibensis Bonaparte, Ferigolo & Ribeiro, 2001 (Eucynodontia, Tritheledontidae) from the Late Triassic of southern Brazil: anatomical and biostratigraphic implications: Anais da Academia Brasileira de Ciências, v. 83, p. 329354.CrossRefGoogle ScholarPubMed
Soares, M.B., Martinelli, A.G., and De Oliveira, T.V., 2014, A new prozostrodontian cynodont (Therapsida) from the Late Triassic Riograndia Assemblage Zone (Santa Maria Supersequence) of Southern Brazil: Anais da Academia Brasileira de Ciências, v. 86, p. 16731691.CrossRefGoogle Scholar
Sues, H.-D., 2001, On Microconodon, a Late Triassic cynodont from the Newark Supergroup of Eastern North America: Bulletin of the Museum of Comparative Zoology, Harvard University, v. 156, p. 3748.Google Scholar
Sues, H.-D., Olsen, P.E., and Kroehler, P.A., 1994, Small tetrapods from the Upper Triassic of the Richmond basin (Newark Supergroup), Virginia, in Fraser, N.C., and Sues, H.-D., eds., In the Shadow of Dinosaurs: Early Mesozoic Tetrapods: Cambridge, Cambridge University Press, p. 161170.Google Scholar
Sulej, T., Niedźwiedzki, G., Tałanda, M., Dróżdż, D., and Hara, E., 2020, A new early Late Triassic non-mammaliaform eucynodont from Poland: Historical Biology, v. 32, p, 8092.CrossRefGoogle Scholar
Świło, M., Niedźwiedzki, G., and Sulej, T., 2014, Mammal-like tooth from the Upper Triassic of Poland: Acta Palaeontologica Polonica, v. 59, p. 815820.Google Scholar
Tolchard, F., Nesbitt, S.J., Desojo, J.B., Viglietti, P., Butler, R.J., and Choiniere, J.N., 2019, ‘Rauisuchian’ material from the lower Elliot Formation of South Africa and Lesotho: Implications for Late Triassic biogeography and biostratigraphy: Journal of African Earth Sciences, v. 160, 103610. https://doi.org/10.1016/j.jafrearsci.2019.103610.CrossRefGoogle Scholar
Wallace, R.V.S., Martínez, R., and Rowe, T., 2019, First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina: PLoS ONE 14(8), e0218791. https://doi.org/10.1371/journal.pone.0218791.CrossRefGoogle ScholarPubMed
Young, C.C., 1978, New material of Eozostrodon: Vertebrata PalAsiatica, v. 16, p. 13.Google Scholar
Zhou, C.-F., Wu, S., Martin, T., and Luo, Z.-X., 2013, A Jurassic mammaliaform and the earliest mammalian evolutionary adaptations: Nature, v. 500, p. 163167.CrossRefGoogle ScholarPubMed
Zhou, C.-F., Bhullar, B.-A.S., Neander, A.I., Martin, T., Luo, Z.-X., 2019, New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones: Science, v. 365, p. 276279.CrossRefGoogle ScholarPubMed