Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T17:44:06.922Z Has data issue: false hasContentIssue false

New applications of light and electron microscopic techniques for the study of microbiological inclusions in amber

Published online by Cambridge University Press:  20 May 2016

Carmen Ascaso
Affiliation:
1Centro de Ciencias Medioambientales, CSIC, Serrano 115 bis, 28006 Madrid, Spain,
Jacek Wierzchos
Affiliation:
2Servicio de Microscopía Electrónica, Universidad de Lleida, Rovira Roure 44, 25198 Lleida, Spain,
J. Carmelo Corral
Affiliation:
3Museo de Ciencias Naturales de Álava. C/Siervas de Jesús, 24. 01001 Vitoria-Gasteiz, Spain,
Rafael López
Affiliation:
3Museo de Ciencias Naturales de Álava. C/Siervas de Jesús, 24. 01001 Vitoria-Gasteiz, Spain,
Jesús Alonso
Affiliation:
3Museo de Ciencias Naturales de Álava. C/Siervas de Jesús, 24. 01001 Vitoria-Gasteiz, Spain,

Abstract

Amber is a superb medium for the fossilization of delicate organisms. Besides light microscopy techniques for the study of insects in amber, scanning electron microscopy (SEM) in backscattered electron mode (SEM-BSE), low temperature SEM (LTSEM) and also confocal laser scanning microscopy (CLSM) were used to examine microcenosis and particulate plant remains (microdebris). We applied these techniques to such inclusions in amber Álava, northern Spain (Allaian: Early Cretaceous). Confocal microscopy provides a 3D image of partial microcenosis showing bifurcate fungal hyphae. The huge potential of SEM-BSE yields high resolution images, in which the relationship between protozoa and fungal hyphae may be observed and the characterization of further ultrastructural details in flagellates. According to the SEM-BSE images, food and pulsatile vacuoles appear better preserved than mitochondria and lipids in amber-embedded protozoa. A process of protozoan mineralization has led to the deposition of S and Fe in peripheral areas, and the Fe is also present in the core of surrounding fungal hyphae. Application of LTSEM for the study of protozoan inclusions produces images of their exteriors showing many vacuoles. Plant tissues under SEM-BSE show mummified cell walls, while the cytoplasm exhibits a bright appearance and is very rich in Fe and S. SEM in secondary electron mode (SEM-SE) also reveals a microbiota trapped in gas bubbles.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar, M. J., del Pozo, J. Ramírez, and Riba, O. 1971. Algunas precisiones sobre la sedimentación y paleoecología del Cretácico inferior en la Zona de Utrillas-Villarroya de los Pinares (Teruel). Estudios Geológicos, 27:497512.Google Scholar
Alonso, J., Arillo, A., Barrón, E., Corral, J. C., Grimalt, J., López, J. F., López, R., Martínez-Delclòs, X., Ortuño, V., Peñalver, E., and Trincao, P. R. 2000. A new fossil resin with biological inclusions in lower Cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). Journal of Paleontology, 74(1):158178.Google Scholar
Arbizu, M., Bernardez, E., Peñalver, E., and Prieto, M. A. 1999. El ámbar de Asturias (España). Estudios del Museo de Ciencias Naturales de Álava, 14 (Núm. Espec. 2):245254.Google Scholar
Arillo, A., and Mostovski, M. B. 1999. A new genus of Priophorinae (Diptera, Phoridae) from the Lower Cretaceous amber of Álava (Spain). Studia Dipterologica, 6(2):251255.Google Scholar
Arillo, A., and Nel, A. 2000. Two new fossil cecidomyiids flies from Lower Cretaceous amber of Alava (Spain) (Diptera, Cecidomyiidae). Bulletin de la Societé entomologique de France, 105(3):285288.Google Scholar
Arillo, A., and Subias, L. S. 2000. A new fossil oribatid mite Archaeorchestes minguezae n. gen. n. sp. from the Spanish Lower Cretaceous amber. Mitteilungen aus dem Geologisch-Paläontogischen. Institut der Universität Hamburg, 84:231236.Google Scholar
Ascaso, C., Wierzchos, J., and de los Ríos, A. 1998. In situ investigations of lichens invading rock at cellular and enzymatic level. Symbiosis, 24:221234.Google Scholar
Azar, D. 1997. A new method for extracting plant and insect fossils from Lebanese amber. Paleontology, 40(4):10271029.Google Scholar
Azar, D., Fleck, G., Nel, A., and Solignac, M. 1999a. A new enicocephalid bug, Enicocephalinus acragrimaldii gen. nov., sp. nov., from the Lower Cretaceous amber of Lebanon (insecta, heteroptera, enicochephalidae). Estudios del Museo de Ciencias Naturales de Álava, 14 (Núm. Espec. 2):217230.Google Scholar
Azar, D., Nel, A., Solignac, M., Paicheler, J.-C., and Bouchet, F. 1999b. New genera and species of psychodoid flies from the Lower Cretaceous amber of Lebanon. Paleontology, 42(6):11011136.Google Scholar
Barrón, E., and Elorza, L. 2000. Esporas Muroornati del Cretácico Inferior de Peñacerrada (Álava, España). I Congreso Ibérico de Paleontología/XVI Jornadas de la Sociedad Española de Paleontología. Evora, 12–14 octubre de 2000, 7879 p.Google Scholar
Baz, A., and Ortuño, V. M. 2000. Archaeatropidae, a new family of Psocoptera from the Cretaceous Amber of Alava, Northern Spain. Annals of Entomologic Society of America, 93(3):367373.Google Scholar
Baz, A., and Ortuño, V. M. 2001a. A new electrentomoid psocid (Psocoptera) from the Cretaceous amber of Alava (Northern Spain). Mitteilungen aus dem Museum für Naturkunde in Berlin-Deutsch Entomologische Zeitschrift 48, 1:2732.Google Scholar
Baz, A., and Ortuño, V. M. 2001b. New genera and species of empheriids (Psocoptera: Empheriidae) from the Cretaceous amber of Alava, northern Spain. Cretaceous Research, 22:575584.Google Scholar
Cann, J. P. 1986. The Feeding Behavior and Structure of Nuclearia delicatula (Filosea: Aconchulinida). Journal of Protozoology, 33:392–356.Google Scholar
Cano, R. J., and Boruki, M. 1995. Revival and identification of bacterial spores in 25 to 40 million year old Dominican amber. Science, 268:10601064.Google Scholar
Casal, G. 1762. Succini Asturici, à Doctore Gafpar Cafal, Almae Eclefiae Cathedralis Ovetenfis Medico, reperti, folertique ejufdem cura probati, & examinati, Hiftoria. Historia Natural y Médica del Principado de Asturias. Ed. Facsímil 1988. Servicio de Publicaciones, Oviedo, Principado de Asturias, 480 p.Google Scholar
Corral, J. C., del Valle, R. López, and Alonso, J. 1999. El ámbar cretácico de Álava (Cuenca Vasco-Cantábrica, Norte de España). Su colecta y preparación. Estudios del Museo de Ciencias Naturales de Álava, 14 (Núm spec. 2):721.Google Scholar
Crane, P. R., Friis, E. M., and Pedersen, K. R. 1995. The origin and early diversification of angiosperms. Nature, 374:2733.Google Scholar
Cherchi, A., and Schroeder, R. 1982. Sobre la edad de la transgresión mesocretácica en Asturias. Cuadernos de Geología Ibérica, 8:219233.Google Scholar
Foissner, W. 1991. Basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa. European Journal of Protistology, 27:313330.CrossRefGoogle ScholarPubMed
Ghiorse, W. C., and Ehrlich, H. L. 1992. Microbial mineralization of iron and manganese. Catena Supplement, 21:7599.Google Scholar
Grimaldi, D. A. 1996. Amber, Window to the Past. Harry N. Abrams, Inc., New York, 216 p.Google Scholar
Grimaldi, D. A., Bonowich, E., Delannoy, M., and Doberstein, S. 1994. Electron microscopic studies of mummified tissues in amber fossils. American Museum Novitates, 3097:31 p.Google Scholar
Grimaldi, D. A., Agosti, D., and Carpenter, J. M. 1997. New and Rediscovered Primitive Ants (Hymenoptera: Formicidae) in Cretaceous Amber from New Jersey, and Their Phylogenetic Relationships. American Museum Novitates, Number 3208, 43 p.Google Scholar
Grimaldi, D. A., Nguyen, T., and Ketcham, R. 2000a. Ultra-High-Resolution X-Ray Computed Tomography (UHR CT) and the study of fossils in amber, p. 7791. In Grimaldi, D. (ed.), Studies of Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
Grimaldi, D. A., Shedrinsky, A., and Wampler, T. W. 2000b. A remarkable deposit of fossiliferous amber from the Upper Cretaceous (Turonian) of New Jersey, p. 177. In Grimaldi, D. (ed.), Studies of Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
Grimaldi, D. A., Lillegraven, J. A., Wampler, T. W., Bookwalter, D., and Shedrinsky, A. 2000c. Amber from Upper Cretaceous through Paleocene strata of the Hanna Basin, Wyoming, with evidence for source and taphonomy of fossil resins. Rocky Mountain Geology, 35:163204.CrossRefGoogle Scholar
Henwood, A. 1992a. Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. Palaios, 7:203212.Google Scholar
Henwood, A. 1992b. Soft part preservation of beetles in Tertiary amber from the Dominican Republic. Paleontology, 35:901912.Google Scholar
Hofmann-Münz, A. H., Schoppmann, H., and Bardele, Ch. F. 1990. The oral apparatus of Colpoda variabilis (Ciliophora, Colpodidae), I, 3-D reconstruction by serial semi-thin sections and low temperature scanning electron microscopy. European Journal of Protistology, 26:8196.Google Scholar
Iturralde-Vincent, M. A., and Macphee, R. D. E. 1996. Age and paleogeographical origin of Dominican amber. Science, 273:18501852.Google Scholar
Joy, D. C. 1991. An introduction to Monte Carlo simulations. Scanning Microscopy, 5:329337.Google Scholar
Kohring, R. 1995. Fossile Bakterien und Pilzsporen aus den Baltischen Bernstein. Neues Jahrbuch für Paläontologie, Monatschefe, 6:321335.Google Scholar
Lambert, L. H., Cox, T., Mitchell, K., Roselló-Mora, R. A., Del Cueto, C., Dodge, D. E., Orkand, P., and Cano, R. J. 1998. Staphylococcus succinus sp. nov. isolated from Dominican amber. International Journal of Systematic bacteriology, 48(2):511518.Google Scholar
Larrasoaña, J. C., and Garcés, M. 2000. Definición del contexto de los yacimientos de ámbar de Montoria-Peñacerrada. Subtarea Paleomagnetismo. Museo de Ciencias Naturales de Álava. 16 p.Google Scholar
Nascimbene, P., and Silverstein, H. 2000. The preparation of fragile Cretaceous ambers for conservation and study of organismal inclusions, p. 93102. In Grimaldi, D. (ed.), Studies of Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
Poinar, G. O. Jr. 1992. Life in Amber. Stanford University Press, Stanford, California, 350 p.Google Scholar
Poinar, G. O. Jr., and Hess, R. 1982. Ultrastructure of 40-million-year-old insect tissue. Science, 215:12411242.Google Scholar
Poinar, G. O. Jr., and Poinar, R. 1999. The Amber Forest. Princeton University Press, Princeton, New York, 239 p.Google Scholar
Poinar, G. O. Jr., Peterson, E. B., and Platt, J. L. 2000. Fossil Parmelia in New World amber. Lichenologist, 32:263270.Google Scholar
del Pozo, J. Ramírez, and Aguilar, M. J. 1969. Ciclotemas en el Aptense superior y Albense inferior de Nograro (Álava). Acta Geológica Hispánica, 4:113118.Google Scholar
Rautureau, M., Cooke, R. U., and Boyde, A. 1993. The application of confocal microscopy to the study of stone weathering. Earth Surface Proceedings Landforms, 18:769775.Google Scholar
Rikkinen, J., and Poinar, G. O. 2001. Fossilized fungal mycelium from Tertiary Dominican amber. Mycological Research, 105:890896.Google Scholar
Schlee, D., and Dietrich, H. G. 1970. Insektenführender Bernstein aus der Unterkreide des Lebanon. Neues Jahrbuch für Geologie und Paläontologie Monatschefe, 1:4050.Google Scholar
Schmidt, A. R., von Eynatten, H., and Wagreich, M. 2001. The Mesozoic amber of Schliersee (southern Germany) is Cretaceous in age. Cretaceous Research, 22:423428.Google Scholar
Schönborn, W., Dörfelt, H., Foissner, W., Krienitz, L., and Schäfer, U. 1999. A fossilized microcenosis in Triassic amber. The Journal of Eukaryotic Microbiology, 46:571584.Google Scholar
Smith, A. B., and Austin, J. J. 1997. Can geologically ancient DNA be recovered from the fossil record? Geoscientist, 7(5):811.Google Scholar
Stankiewicz, B. A., Poinar, H. N., Briggs, D. E. G., Evershed, R. P., and Poinar, G. O. Jr. 1998. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society of London B, 256:641647.Google Scholar
Szadziewski, R., and Arillo, A. 1998. Biting midges (Diptera: Ceratopogonidae) from the Lower Cretaceous Amber from Alava, Spain. Polish Journal of Entomology, 67:291298.Google Scholar
Waggoner, B. M. 1994. An aquatic microfossil assemblage from Cenomanian amber of France. Lethaia, 27:7784.Google Scholar
Waters, S. B., and Arillo, A. 1999. A new Hybotidae (Diptera, Empidoidea) from Lower Cretaceous amber of Álava (Spain). Studia Dipterologica, 6(1):5966.Google Scholar
Weitschat, W., and Wichard, W. 1998. Atlas der Pflanzen und Tiere im Baltischen Bernstein. Verlag Dr. Friedrich Pfeil, München, 256 p.Google Scholar
Wier, A., Dolan, M., Grimaldi, D., Guerrero, R., Wagensburg, J., and Margulis, L. 2002. Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proceedings of the National Academy of Sciences, USA, 99:14101413.Google Scholar
Wierzchos, J., and Ascaso, C. 1994. Application of backscattered electron imaging to the study of the lichen rock interface. Journal of Microscopy-Oxford, 175:5459.Google Scholar
Wierzchos, J., and Ascaso, C. 2001. Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica: suggestions for in situ further research. Polar Biology, 24:863868.Google Scholar
Wilmsen, M. 1997. Das Oberalb und Cenoman im Nordkantabrischen Becken (Provinz Kantabrien, Nordspanien): Faziesentwicklung, Bio-und Sequenzstratigraphie. Berliner Geowissenschaftliche Abhandlungen, (E) 23, 167 p.Google Scholar