Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T03:38:47.784Z Has data issue: false hasContentIssue false

Morphologic evolution of the coccolithophorid Calcidiscus leptoporus from the Early Miocene to Recent

Published online by Cambridge University Press:  20 May 2016

Michael Knappertsbusch*
Affiliation:
Naturhistorisches Museum, Augustinergasse 2, 4001-Basel, Switzerland,

Abstract

A detailed investigation of the morphological evolution of the coccolithophorids Calcidiscus leptoporus and C. macintyrei from the Early Miocene to the Quaternary shows that microevolutionary patterns were very complex. Speciation patterns such as cladogenesis and phyletic divergence were observed, but stasis also existed over prolonged time-intervals. Similar coccoliths developed repeatedly at stratigraphically distant intervals, leading to taxonomic uncertainies. On the basis of bivariate frequency diagrams of coccolith diameters and number of elements in the distal shields nine morphotypes S, I, L, F, A, B, C, D and E are distinguished. A tentative phylogeny was constructed for these morphotypes suggesting, that they belong to one extant species and several extinct species. The extant species is Calcidiscus leptoporus, which comprises the living morphotypes S, I, L, and F and one extinct morphotype E. Morphotype S is the most conservative one, which originated from an unknown ancestor during the Early Miocene or earlier, while morphotype I originated from S during the Early Miocene. Morphotypes L and E separated from I during the Late Miocene. An extinct lineage is proposed, including morphotypes C, D, A, and B, which all produced large coccoliths except morphotype B, which is small. Morphotypes C, D, and A are very similar to a coccolith that specialists call Calcidiscus macintyrei, but in the present phylogenetic model they may belong to separate species with similar morphology. Morphotype C developed from morphotype I during the Early Miocene and is the precursor of an extra large morphotype D, and two other morphotypes, A and B. All three forms separated from morphotype C by pronounced cladogenetic events during the Late Miocene and Pliocene, and hence may represent separate species. Morphotypes A and B are supposed to belong to an extinct morphocline and may thus be ecophenotypes of one species. Alternatively, due to the lack of paleoenvironmental and biogeographic observations in the past, it cannot be discounted that all morphotypes found in this investigation simply represent ecovariants of one species. With the present status of knowledge, it is not possible to propose a sound differential diagnosis in the plexus C. leptoporus-C. macintyrei, which would allow differentiation among species at each point in space and time. It is hoped that this study stimulates further morphometric and phylogenetical studies that will generate a more profound understanding of species in paleontology and biology in general.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Backman, J., and Shackleton, N. J. 1983. Quantitative biochronology of Pliocene and early Pleistocene calcareous nannofossils from the Atlantic, Indian and Pacific Oceans. Marine Micropaleontology, 8:141170.CrossRefGoogle Scholar
Backman, J., and Hermelin, J. O. R. 1986. Morphometry of the Eocene nannofossil Reticulofenestra umbilicus lineage and its biochronological consequences. Paleogeography, Paleoclimatology, Paleoecology, 57:103116.CrossRefGoogle Scholar
Baumann, K. H. 1990. Veränderlichkeit der Coccolithophoriden-Flora des Europäischen Nordmeeres im Jungquartär. Berichte aus dem Sonderforschungsbereich 313 “Sedimentation im Europäischen Nordmeer”, 22, 146 p.Google Scholar
Berggren, W. A., a, Swisher, C. C., and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubry, M. -P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication 54.Google Scholar
Biolzi, M. 1991. Morphometric analyses of the Late Neogene planktonic foraminiferal lineage Neogloboquadrina dutertrei . Marine Micropaleontology, 18:129142.CrossRefGoogle Scholar
Boudreaux, J. 1974. Calcareous nannoplankton ranges, Deep-Sea Drilling Project Leg 23. Initial Reports of the DSDP, 23:10731090.Google Scholar
Bralower, T. J., and Parrow, M. 1996. Morphometrics of the Paleocene coccolith genera Cruciplacolithus, Chiasmolithus, and Sullivania: a complex evolutionary history. Paleobiology, 22:352385.CrossRefGoogle Scholar
Bukry, D. 1974. Coccolith stratigraphy, Arabian and Red Seas, Deep Sea Drilling Project Leg 23. Init. Rep. DSDP, 23:10911093.Google Scholar
Bukry, D., and Bramlette, M. N. 1969. Some new and stratigraphically useful calcareous nannofossils of the Cenozoic. Tulane Studies in Geology and Paleontology, 7:131142.Google Scholar
Cande, S. C., and Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 100(B4):60936095.CrossRefGoogle Scholar
Caulet, J. P., Clement, P., and Milleliri, P. 1984. GEOCORES: Inventaire informatisé des roches et sédiments marins conservés au Muséum d'Histoire Naturelle. Bulletin du Muséum national d'Histoire naturelle de Paris, 4e Série, 6(C3):215243.Google Scholar
De Kaenel, E., and Villa, G. 1996. Oligocene-Miocene calcareous nannofossil biostratigraphy and paleoecology from the Iberia Abyssal Plain, p. 79145. In Whitmarsh, R. B., Sawyer, D. S., Klaus, A., and Masson, D. G. (eds.), Proceedings of the Ocean Drilling Program. Scientific Results, 149.Google Scholar
Dudley, W. C., Blackwelder, P., Brand, L., and Duplessy, J. C. 1986. Stable isotopic composition of coccoliths. Marine Micropaleontology, 10:18.CrossRefGoogle Scholar
Dudley, W. C., Duplessy, J. C., Blackwelder, P. L., Brand, L. E., and Guillard, R. R. L. 1980. Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature, 285:222223.CrossRefGoogle Scholar
Eldredge, N., and Gould, S. J. 1972. Punctuated equilibria: An alternative to phyletic gradualism, p. 82115. In Schopf, T.J.M. (ed.), Models in Paleobiology. Freeman, Cooper and Company, San Francisco.Google Scholar
Farrell, J. W., Murray, D. W., McKenna, V. S., and Ravelo, A. C. 1995. Upper ocean temperature and nutrient contrasts inferred from Pleistocene planktonic foraminifera δ18 O and δ13 C in the Eastern Equatorial Pacific. Proceedings of the ODP, Scientific results, 138:289319.Google Scholar
Futuyma, D. J. 1986. Evolutionary Biology (second edition). Sinauer Associates, Inc., Sunderland, Massachusetts, 600 p.Google ScholarPubMed
Geitzenauer, K. R., Roche, M. B., and McIntyre, A. 1977. Coccolith biogeography from North Atlantic and Pacific surface sediments, p. 9731008. In Ramsay, A. T. S. (ed.), Oceanic Micropaleontology, 2, Academic Press.Google Scholar
Gould, S. J., and Eldredge, N. 1993. Punctuated equilibrium comes of age. Nature, 366:223227.CrossRefGoogle ScholarPubMed
Huber, B. T., Bijma, J., and Darling, K. 1997. Cryptic speciation in the living planktonic foraminifer Globigerinella siphonifera (d'Orbigny). Paleobiology, 23:3362.CrossRefGoogle Scholar
Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J. 1984. The orbital theory of Pleistocene Climate: Support from a revised chronology of the marine δ 18 O record, p. 269305. In Berger, A. L., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B. (eds.), Milankovitch and Climate, Pt. 1, D. Reidel Publishing Company, Dordrecht.Google Scholar
Jackson, J. B. C., and Cheetham, A. H. 1999. Tempo and mode of speciation in the sea. TREE, 14:7277.Google Scholar
Janin, M. C. 1981. Essai de datation de quelques concrétions polymétalliques et évolution quarternaire du coccolithe Cyclococcolithus leptoporus-macintyrei . Bulletin de la Société géologique de France, 7, tome XXIII(3):287296.CrossRefGoogle Scholar
Janin, M. C. 1992. Miocene variability of Calcidiscus gr. leptoporus and possible evolutionary relationship with another Coccolithaceae: Umbilicosphaera gr. sibogae . BioSystems, 28:169178.CrossRefGoogle ScholarPubMed
Kellogg, D. E. 1983. Phenology of morphologic change in radiolarian lineages from deep-sea cores: implications for macroevolution. Paleobiology, 9:355362.CrossRefGoogle Scholar
Kellogg, D. E. 1975. The role of phyletic change in the evolution of Pseudocubus vema (Radiolaria). Paleobiology, 1:359370.CrossRefGoogle Scholar
Kellogg, D. E., and Hays, J. D. 1975. Microevolutionary patterns in Late Cenozoic Radiolaria. Paleobiology, 1:150160.CrossRefGoogle Scholar
Kleijne, A. 1993. Morphology, taxonomy and distribution of extant coccolithophorids (calcareous nannoplankton). Ph.D. dissertation, Vrije Universiteit Amsterdam, Amsterdam, 321 p.Google Scholar
Knappertsbusch, M. 1990. Geographic distribution of modern coccolithophorids in the Mediterranean Sea and morphological evolution of Calcidiscus leptoporus . Unpublished Ph.D. dissertation, Swiss Federal Institute of Technology Zürich, 141 p.Google Scholar
Knappertsbusch, M. 1993. Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Marine Micropaleontology, 21:219247.CrossRefGoogle Scholar
Knappertsbusch, M., Cortes, M. Y., and Thierstein, H. R. 1997. Morphologic variability of the coccolithophorid Calcidiscus leptoporus in the plankton, surface sediments and from the Early Pleistocene. Marine Micropaleontology, 30:293317.CrossRefGoogle Scholar
Kucera, M., and Malmgren, B. A. 1996. Latitudinal variation in the planktonic foraminifer Contusotruncana contusa in the terminal Cretaceous ocean. Marine Micropaleontology, 28:3152.CrossRefGoogle Scholar
Kucera, M., and Malmgren, B. A. 1998. Differences between evolution of mean form and evolution of new morphotypes: an example from Late Cretaceous planktonic foraminifera. Paleobiology, 24:4963.CrossRefGoogle Scholar
Lazarus, D. 1983. Speciation in pelagic protista and its study in the planktonic microfossil record: a review. Paleobiology, 9:327340.CrossRefGoogle Scholar
Lazarus, D., Hilbrecht, H., Spencer-Cervato, C., and Thierstein, H. 1995. Sympatric speciation and phyletic change in Globorotalia truncatulinoides . Paleobiology, 21:2851.CrossRefGoogle Scholar
Malmgren, B. A., and Kennett, J. P. 1981. Phyletic gradualism in a Late Cenozoic planktonic foraminiferal lineage; DSDP Site 284, southwest Pacific. Paleobiology, 7:230240.CrossRefGoogle Scholar
Malmgren, B. A., Berggren, W. A., and Lohmann, G. P. 1983. Evidence for punctuated gradualism in the Late Neogene Globorotalia tumida lineage of planktonic foraminifera. Paleobiology, 9:377389.CrossRefGoogle Scholar
Matsuoka, H., and Okada, H. 1990. Time-progressive morphometric changes of the genus Gephyrocapsa in the Quaternary sequence of the tropical Indian Ocean, Site 709, p. 255270. In Duncan, R. A., Backman, J., Peterson, L. C. (eds.), Proceedings of the Ocean Drilling Program. Scientific Results, 115.Google Scholar
Mayr, E. 1967. Artbegriff und Evolution. Paul Parey Verlag, Hamburg, 617 p. (Translated from E. Mayr, 1963, “Animal species and evolution”. Harvard University Press, Cambridge, Massachusetts, 797 p.).Google Scholar
McIntyre, A., and Be, A. W. H. 1967. Modern coccolithophoridae of the Atlantic Ocean-1. Placoliths and Cyrtoliths. Deep-Sea Research, 14:561597.Google Scholar
McIntyre, A., Be, A. W. H., and Preikstas, R. 1967. Coccoliths and the Pliocene-Pleistocene boundary. Progress in Oceanography, 4:325.CrossRefGoogle Scholar
McKinney, M. L. 1990. Trends in body-size evolution, p. 75118. In McNamara, K. J. (ed.), Evolutionary Trends. The University of Arizona Press, Tuscon.Google Scholar
Murray, G., and Blackman, B. A. 1898. On the Nature of the Coccospheres and Rhabdospheres. Philosophical Transactions of the Royal Society of London, Biological Series, 190:427440.Google Scholar
Norris, R. D., R. Corfield, M., and Cartlidge, J. 1996. What is gradualism? Cryptic speciation in a globorotaliid foraminifera. Paleobiology, 22:386405.CrossRefGoogle Scholar
Perch-Nielsen, K. 1985. Cenozoic calcareous nannofossils, p. 427554. In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge.Google Scholar
Prell, W. L., Imbrie, J., Martinson, D. G., Morley, J. J., Pisias, N. G., Shackleton, N. J., and Streeter, H. F. 1986. Graphic correlation of oxygen isotope stratigraphy: application to the Late Quaternary. Paleoceanography, 1:137162.CrossRefGoogle Scholar
Rio, D., Fornaciari, E., and Raffi, I. 1990. Late Oligocene through Early Pleistocene calcareous nannofossils from Western Equatorial Indian Ocean (Leg 115), p. 175235. In Duncan, R. A., Backman, J., and Peterson, L. C. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 115.Google Scholar
Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., and Backman, J. 1989. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography, 4:353412.CrossRefGoogle Scholar
Spencer-Cervato, C., and Thierstein, H. R. 1997. First appearance of Globorotalia truncatulinoides: cladogenesis and immigration. Marine Micropaleontology, 30:267291.CrossRefGoogle Scholar
Stanley, S. M. 1973. An explanation for Cope's Rule. Evolution, 27:126.CrossRefGoogle ScholarPubMed
Theodoridis, S. 1984. Calcareous nannofossil biozonation of the Miocene and revision of the helicoliths and discoasters. Utrecht Micropaleontological Bulletins, 32:1271.Google Scholar
U.S. National Geophysical Data Center. 1989. Marine Geological and Geophysical Data from the Deep Sea Drilling Project, CD-ROM Data Set, Volume I, Sediment/Hardrock and Reference Files. Published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Geophysical Data Center in cooperation and with support from Joint Oceanographic Institutions, Inc., U.S. Science Support Program through a contract with the U.S. National Science Foundation.Google Scholar
Va Donk,n, J. 1976. O18 Record of the Atlantic Ocean for the entire Pleistocene Epoch. Geological Society of America Memoir, 145:147163.CrossRefGoogle Scholar
Whitmarsh, R. B., Weser, O. E., Ali, S., Boudreaux, J. E., Fleisher, R. L., Jipa, D., Kidd, R. B., Mallik, T. K., Matter, A., Nigrini, C., Siddiquie, H. N., Stoffers, P., Coleman, R., and Hamilton, N. 1974. Site 223. Initial Reports of the DSDP, 23:291381.Google Scholar
Young, J. R. 1987. Neogene calcareous nannofossils from the Makran of Pakistan and the Indian Ocean. Unpublished Ph.D. thesis, University of London, 288 p.Google Scholar
Young, J. R. 1989. Observations on heterococcolith rim structure and its relationship to developmental processes, p. 120. In Crux, J. A. and van Heck, S. E. (eds.), Nannofossils and their Applications. Ellis Horwood Limited, Chichester.Google Scholar
Young, J. R. 1990. Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP cores. Journal of Micropaleontology, 9:7186.CrossRefGoogle Scholar
Young, J. R. 1998. Chapter 8, Neogene, p. 225283. In Bown, P. R. (ed.), Calcareous Nannofossil Biostratigraphy. Chapman and Hall, Kluwer Academic Publishers Group, Dordrecht, The Netherlands.CrossRefGoogle Scholar