Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T03:40:44.877Z Has data issue: false hasContentIssue false

Middle Miocene recovery of Caribbean reef corals: New data from the Tamana Formation, Trinidad

Published online by Cambridge University Press:  20 May 2016

Kenneth G. Johnson*
Affiliation:
Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093-0244,

Abstract

Caribbean coral reef communities were restructured by episodes of accelerated biotic change during the late Oligocene/early Miocene and the late Pliocene/early Pleistocene. However, rigorous description of the effects of rapid biotic change is problematic because preservation and exposure of coral-bearing deposits is not consistent in all stratigraphic intervals. In the Caribbean, early and middle Miocene exposures are more rare than late Miocene and Pliocene exposures. One exception is the late early to early middle Miocene Tamana Formation of Trinidad, and old and new collections from this unit were studied to determine the timing of recovery after the Oligocene/Miocene transition. A total of 41 species of zooxanthellate corals were recovered from the unit, including 21 new records. Within these assemblages, species first occurrences outnumber species last occurrences by a factor of four (31 first occurrences and eight last occurrences). The extension of the stratigraphic ranges of species previously first recorded in Pliocene sediments has reduced an apparent Pliocene pulse of origination, indicating that the Pliocene/Pleistocene transition was largely a result of accelerated extinction against a background of near-constant origination. The fact that few species last occur in the Tamana fauna indicates that the Oligocene/Miocene transition was complete by the end of the early Miocene.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1993. Diversity of Atlantic coastal plain mollusks since the Pliocene. Science, 260:16261629.CrossRefGoogle ScholarPubMed
Allmon, W. D., Rosenberg, G., Portell, R. W., and Schindler, K. S. 1996. Diversity of Pliocene-Recent mollusks in the Western Atlantic: extinction, origination, and environmental change, p. 271302. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, Illinois.Google Scholar
Behrensmeyer, A. K., Todd, N. E., Potts, R., and Mcbrinn, G. E. 1997. Late Pliocene faunal turnover in the Turkana Basin, Kenya and Ethiopia. Science, 278:15891594.CrossRefGoogle ScholarPubMed
Berggren, W. A., Kent, D. V., Swisher III, C. C., and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication, 54.Google Scholar
Blow, W. H. 1969. Late Middle Eocene to Recent planktonic foraminiferal biostratigraphy. Proceedings of the First International Conference on Planktonic Microfossils (Geneva, 1967), Leiden. E. J. Brill, 1:199421.Google Scholar
Bolli, H. M., and Saunders, J. B. 1985. Oligocene to Holocene low latitude planktic foraminifera, p. 155262. In Bolli, H. M., Saunders, J. B., and Perch-Nilsen, K. (eds.), Plankton Stratigraphy. Cambridge University Press, Cambridge, U.K.Google Scholar
Budd, A. F. 2000. Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs, 19:2536.CrossRefGoogle Scholar
Budd, A. F., and Johnson, K. G. 1996. Recognizing species of Late Cenozoic Scleractinia and their evolutionary patterns, p. 5979. In Stanley, G. (ed.), Paleobiology and Biology of Corals. Paleontological Society Papers 1.Google Scholar
Budd, A. F., and Johnson, K. G. 1999a. Neogene Paleontology in the northern Dominican Republic: 19, the family Faviidae (Anthozoa: Scleractinia). P. II. The genera Caulastraea, Diploria, Thysanus, Hadrophyllia, Manicina, and Colpophyllia . Bulletins of American Paleontology, 356:183.Google Scholar
Budd, A. F., and Johnson, K. G. 1999b. Origination preceding extinction during Late Cenozoic turnover of Caribbean reefs. Paleobiology, 25:188200.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Edwards, J. C. 1995. Caribbean reef coral diversity during the Early to Middle Miocene: an example from the Anguilla Formation. Coral Reefs, 14:109117.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. A. 1996. Plio-Pleistocene turnover in the Caribbean reef coral fauna, p. 168204. In Jackson, J. B. C., Coates, A. G., and Budd, A. F. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, Illinois.Google Scholar
Budd, A. F., Petersen, R. A., and Mcneill, D. F. 1998. Stepwise faunal change during evolutionary turnover: a case study from the Neogene of Curaçao, Netherlands Antilles. Palaios, 13:170188.CrossRefGoogle Scholar
Budd, A. F., Stemann, T. A., and Johnson, K. G. 1994. Stratigraphic distributions of Neogene to Recent Caribbean reef corals: a new compilation. Journal of Paleontology, 68:951959.CrossRefGoogle Scholar
Budd, A. F., Johnson, K. G., Stemann, T. A., and Thompkins, B. H. 1999. Pliocene to Pleistocene reef corals assemblages in the Limon Group of Costa Rica. Bulletins of American Paleontology, 357:119158.Google Scholar
Carr-Brown, B., and Frampton, J. 1979. An outline stratigraphy of Trinidad. Field Guide, Fourth Latin American Geological Conference, Port-of-Spain, Trinidad, 7–15 July, 12 p.Google Scholar
Coates, A. G. 1999. Lithostratigraphy of the Neogene strata of the Caribbean coast from Limon, Costa Rica to Colon, Panama. Bulletins of American Paleontology, 357:1737.Google Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996. Earliest evolution associated with closure of the Tropical American Seaway. Proceedings of the National Academy of Science, 93:60696072.CrossRefGoogle ScholarPubMed
Díaz De Gamero, M. L. 1996. The changing course of the Orinoco River during the Neogene: a review. Palaeogeography, Palaeoclimatology and Palaeoecology, 123:385402.CrossRefGoogle Scholar
Donovan, S. K. 1994. Trinidad, p.209228. In Donovan, S. K. (ed.), Caribbean Geology. University of the West Indies Publishers Association, Kingston, Jamaica.Google Scholar
Duncan, P. M. 1868. On the fossil corals (Madreporia) of the West Indian Islands, part IV. Geological Society of London Quarterly Journal, 24:1014.CrossRefGoogle Scholar
Edinger, E. N., and Risk, M. J. 1994. Oligocene-Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios, 9:576598.CrossRefGoogle Scholar
Edinger, E. N., and Risk, M. J. 1995. Preferential survivorship of brooding corals in a regional extinction. Paleobiology, 21:200219.CrossRefGoogle Scholar
Erlich, R. N., Farfan, P. F., and Hallock, P. 1993. Biostratigraphy, depositional environments, and diagenesis of the Tamana Formation, Trinidad: a tectonic marker horizon. Sedimentology, 40:743768.CrossRefGoogle Scholar
Erwin, D. H. 1996. Understanding biotic recoveries: extinction, survival, and preservation during the end-Permian mass extinction, p. 205233. In Jablonski, D., Erwin, D. H., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago, Illinois.Google Scholar
Frost, S. H. 1972. Evolution of Cenozoic Caribbean coral faunas. Caribbean Geological Conference Transactions, 6:461464.Google Scholar
Frost, S. H. 1977. Cenozoic reef systems of Caribbean: prospects for paleoecologic synthesis. Studies in Geology (Tulsa), 4:93110.Google Scholar
Frost, S. H., and Langenheim, R. L. 1974. Cenozoic reef biofacies. Northern Illinois University Press, DeKalb, 388 p.Google Scholar
Frost, S. H., and Schafersman, S. D. 1978. Oligocene reef community succession, Damon Mound, Texas: Gulf Coast Association of Geological Societies Transactions, 28:143160Google Scholar
Frost, S. H., and Weiss, M. P. 1979. Patch-reef communities and succession in the Oligocene of Antigua, West Indies. Geological Society of America Bulletin, 90:I612I616, II1094II1141.2.0.CO;2>CrossRefGoogle Scholar
Frost, S. H., Harbour, J. L., Beach, D. K., Realini, M. J., and Harris, P. M. 1983. Oligocene reef tract development, southwestern Puerto Rico; P. I, text. Sedimenta, 9:1144.Google Scholar
Gasperi, J. T., and Kennett, J. P. 1993. Vertical thermal structure evolution of Miocene surface waters; western Equatorial Pacific DSDP Site 289. Marine Micropaleontology, 22:235254.CrossRefGoogle Scholar
Gould, S. J. 1985. The paradox of the first tier: an agenda for paleobiology. Paleobiology, 11:212.CrossRefGoogle Scholar
Hallock, P. 1988. The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeography, Palaeoclimatology, and Palaeoecology, 63:275291.CrossRefGoogle Scholar
Hallock, P., and Schlager, W. 1986. Nutrient excess and the demise of coral reefs and carbonate platforms. Palaios, 1:389398.CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 1999. Models for simulating the fossil record. Geology, 27:491494.2.3.CO;2>CrossRefGoogle Scholar
Ivany, L. C., and Schopf, K. M. (eds.). 1996. New perspectives on faunal stability in the fossil record. Palaeogeography, Palaeoclimatology, and Palaeoecology, 127:1359.Google Scholar
Jackson, J. B. C., and Johnson, K. G. 2000. Life in the last few million years. Paleobiology, in press.CrossRefGoogle Scholar
Johnson, K. G., and Mccormick, T. 1999. The quantitative description of faunal change using paleontological databases, p. 227247. In Harper, D. (ed.), Numerical Palaeobiology. Wiley, Chichester, UK.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean corals. Paleobiology, 21:5273.CrossRefGoogle Scholar
Kugler, H. G. 1953. Jurassic to recent sedimentary environments in Trinidad. Bulletin de l'Association suisse des géologues et ingénieurs du pétrole, 20:2760.Google Scholar
Kugler, H. G. 1956. Trinidad, p. 351365. In Jenks, W. F. (ed.), Handbook of South American Geology. Geological Society of America Memoir, 65.Google Scholar
Mccune, B., and Mefford, M. J. 1997 PC-ORD. Multivariate analysis of ecological data, Version 3.20. MjM Software design, Glenelden Beach, Oregon.Google Scholar
Mesolella, K. J., Sealy, H. A., and Matthews, R. K. 1970. Facies geometries within Pleistocene reefs of Barbados, West Indies. American Association of Petroleum Geologists Bulletin, 54:18991917.Google Scholar
Pandolfi, J. M., and Jackson, J. B. C. 2000. Ecological structure in Pleistocene reef corals from Curaçao, Netherlands Antilles. Ecology, in press.CrossRefGoogle Scholar
Pandolfi, J. M., Jackson, J. B. C., and Geister, J. 2000. Geologically sudden extinction of two widespread Late Pleistocene Caribbean reef corals. In Jackson, J. B. C., Lidgard, S., and McKinney, F. K. Process From Pattern in the Fossil Record, in press.Google Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene Paleontology in the northern Dominican Republic, 1: field surveys, lithology, environment, and age. Bulletins of American Paleontology, 89:179.Google Scholar
Scott, T. M. 1988. The lithostratigraphy of the Hawthorn Group (Miocene) of Florida. Florida Geological Survey Bulletin, 59:1148.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: the Plio-Pleistocene decimation of the Western Atlantic molluscs. Palaios, 1:1736.CrossRefGoogle Scholar
Vaughan, T. W. 1919. Fossil corals from Central America, Cuba, and Porto Rico with an account of the American Tertiary, Pleistocene, and recent coral reefs. Unites States National Museum Bulletin, 103:189524.Google Scholar
Vaughan, T. W., and Hoffmeister, J. E. 1926. Miocene corals from Trinidad. Papers from the Department of Marine Biology, Carnegie Institution of Washington, 23:107132.Google Scholar
Vokes, E. H. 1989. An overview of the Chipola Formation, northwestern Florida. Tulane Studies in Geology and Paleontology, 22:1324.Google Scholar
Vrba, E. S. 1995. On the connections between paleoclimate and evolution, p. 2445. In Vrba, E. S., Denton, G. H., Partridge, T. C., and Burckle, L. H. (eds.), Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven, Connecticut.Google Scholar
Woodring, W. P. 1957. Geology and paleontology of Canal Zone and adjoining parts of Panama. United States Geological Survey Professional Paper, 306A:1145Google Scholar
Woodring, W. P. 1964. Geology and paleontology of Canal Zone and adjoining parts of Panama. United States Geological Survey Professional Paper, 306C:241297Google Scholar