Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T03:23:39.678Z Has data issue: false hasContentIssue false

Late Triassic gastrochaenid and lithophaginid borings (Mollusca: Bivalvia) from Nevada (USA) and Austria

Published online by Cambridge University Press:  20 May 2016

Joseph G. Carter
Affiliation:
1Department of Geological Sciences, University of North Carolina at Chapel Hill 27599
George D. Stanley Jr.
Affiliation:
2Department of Geology, The University of Montana, Missoula 59812

Extract

The endolithic life habit has evolved several times in the Bivalvia, e.g., in the superfamilies Modiolopsoidea (family Modiolopsidae), Mytiloidea (family Mytilidae, subfamily Lithophaginae), Arcoidea (family Arcidae), Cardioidea (family Tridacnidae), Veneroidea (family Petricolidae), Gastrochaenoidea, Myoidea (family Myidae), Hiatelloidea, and Pholadoidea (families Pholadidae and Teredinidae) (Otter, 1937; Yonge, 1963; Cox, 1969; Carter, 1978; Kleemann, 1980). The oldest known definite bivalve borings are Ordovician slotlike depressions in stromatoporoids, made by the facultative nestler/borer modiolopsid Corallidomus Whitfield, 1893 [1895] (Pojeta and Palmer, 1976; Wilson and Palmer, 1988). Pojeta and Palmer (1976) and Morton (1990) cited Corallidomus as the ancestor of the Lithophaginae. However, lithophaginids more likely evolved from modiolinid mytilids, which in turn evolved from modiolopsids (Fang and Morris, 1997; Fang, 1998; Carter et al., 2000). Lithophaga-like shells are known from the Carboniferous and Permian, but these Upper Paleozoic examples are not known to have been endolithic (Kleemann, 1983, 1990, table 2). Wilson and Palmer (1998) attributed certain borings without associated shells in Upper Carboniferous limestone cobbles to lithophaginids because the borings are widest near their anterior end and they lack a constricted neck. However, if, as Wilson and Palmer suggested, these borings are not posteriorly truncated, then their openings are relatively much wider than typical lithophaginid borings. One boring illustrated by Wilson and Palmer (1998, fig. 4) has an irregular anterior cross-sectional shape that is unlike lithophaginid and gastrochaenid borings. This irregularity recalls the Early Ordovician ichnospecies Gastrochaenolites oelandicus Ekdale and Bromley, 2001, which is similarly vase-shaped. Ekdale and Bromley (2001) noted that the latter boring predates known endolithic bivalves, so they attributed it to an unknown invertebrate.

Type
Paleontological Notes
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertling, M. 1997. Bioerosion of Late Jurassic reef corals—implications for reef evolution, p. 16631668. In Lessios, H. A. and Macintyre, I. G. (eds.), Proceedings of the 8th International Coral Reef Symposium, Panama, June 24–29, 1996, Volume 2. Smithsonian Tropical Research Institute, Balboa, Panama.Google Scholar
Carpenter, P. P. 1855–1857. Catalogue of the Reigen collection of Mazatlan Mollusca in the British Museum. Oberlin Press, Warrington, xvi + 552 p. [publication dates: p. 1–120, 1855; p. 121–444, 1856; p. 445–552, 1857].Google Scholar
Carter, J. G. 1978. Ecology and evolution of the Gastrochaenacea, with notes on the evolution of the endolithic habitat. Peabody Museum of Natural History, Yale University Bulletin, 41:192, 67 figs.Google Scholar
Carter, J. G. 1990. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca), p. 135296. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Volume I. Van Nostrand Reinhold, New York.Google Scholar
Carter, J. G., Campbell, D. C., and Campbell, M. R. 2000. Cladistic perspectives on early bivalve evolution, p. 4779. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), The Evolutionary Biology of the Bivalvia. Geological Society, London, Special Publications, Volume 177.Google Scholar
Chavan, A. 1952. Les Pelecypodes des Sables Astartiens de Cordebugle (Calvados). Mémoires Suisses de Paléontologie, 69:1132, 4 pls.Google Scholar
Cox, L. R. 1969. Biology of the Bivalvia, p. N5N11. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. N, Mollusca 6, Bivalvia. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ekdale, A. A., and Bromley, R. G. 2001. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia, 34:112.Google Scholar
Fagerstrom, J. A. 1987. The Evolution of Reef Communities. John Wiley and Sons, New York, 600 p.Google Scholar
Fagerstrom, J. A., and Weidlich, O. 1999. Strengths and weaknesses of the reef guild concept and quantitative data: application to the Upper Capitan-Massive community (Permian), Guadalupe Mountains, New Mexico-Texas. Facies, 40:131156.CrossRefGoogle Scholar
Fang, Z. 1998. Revision and taxonomic position of the aberrant Devonian bivalve Beichuania, p. 185191. In Johnston, P. A. and Haggart, J. W. (eds.), Bivalves: An Eon of Evolution; Paleobiological Studies Honoring Norman D. Newell. University of Calgary Press, Calgary.Google Scholar
Fang, Z., and Morris, N. J. 1997. The genus Pseudosanguinolites and some modioliform bivalves (mainly Palaeozoic): Palaeoworld. Laboratory of Paleobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Academia Sinica, 7:4969.Google Scholar
Flügel, E., and Senowbari-Daryan, B. 2001. Triassic reefs of the Tethys, p. 217249. In Stanley, D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems: Topics in Geobiology. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Frech, F. 1890. Die Korallen der juvavischen Triasprovinz (Zlambachschichten, Hallstätter Kalke, Rhaet). Palaeontographica, Stuttgart, 37:1116, 21 pls.Google Scholar
Fürsich, F. T., Palmer, T. J., and Goodyear, K. L. 1994. Growth and disintegration of bivalve dominated patch reefs in the Upper Jurassic of southern England. Palaeontology, 37(1):131171, 7 pls.Google Scholar
Gümbel, C. W. Von. 1861. Geognostische Beschreibung des Bayerischen Alpengebirges und Seines Vorlandes. J. Perthes, Gotha, xx + 950 p., 42 pls.Google Scholar
Harper, E. M., and Skelton, P. W. 1993. The Mesozoic Marine Revolution and epifaunal bivalves. Scripta Geologica (Special Issue), 2:127153.Google Scholar
Kleemann, K. 1980. Boring bivalves and their host corals from the Great Barrier Reef. Journal of Molluscan Studies, Reading, 46(1):1354.Google Scholar
Kleemann, K. 1983. Catalogue of Recent and fossil Lithophaga (Bivalvia). Journal of Molluscan Studies, Reading (Supplement), 12:146.Google Scholar
Kleemann, K. 1990. Evolution of the chemically boring Mytilidae (Bivalvia), p. 111124. In Morton, B. (ed.), The Bivalvia B Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge, Edinburgh, 1986. Hong Kong University Press, Hong Kong.Google Scholar
Kleemann, K. 1994. Mytilid bivalve Lithophaga in Upper Triassic coral Pamiroseris from Zlambach Beds compared with Cretaceous Lithophaga alpina. Facies, 30:151154.CrossRefGoogle Scholar
Kleemann, K. 1995. Biocorrosion by bivalves. Marine Ecology, 17(1–3):145158.Google Scholar
Leinfelder, R. R. 2001. Jurassic reef ecosystems, p. 251309. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer, Academic/Plenum, New York.Google Scholar
Matzner, C. 1986. Die Zlambach-Schichten (Rhät) in den Nördlichen Kalkalpen: Eine Platform-Hang-Beckenentwicklung mit allochthoner Karbonatsedimentation. Facies, 14:1104.Google Scholar
Morton, B. S. 1990. Corals and their bivalve borers—The evolution of a symbiosis, p. 1146. In Morton, B. S. (ed.), The Bivalvia—Proceedings of a Memorial Symposium in Honour of Sir Charles Maurice Yonge, Edinburgh, 1986. Hong Kong University Press, Hong Kong.Google Scholar
Otter, G. W. 1937. Rock-destroying organisms in relation to coral reefs. Scientific Reports of the Great Barrier Reef Expedition, 1(12):323352.Google Scholar
Perry, C. T., and Bertling, M. 2000. Spatial and temporal patterns of macroboring within Mesozoic and Cenozoic coral reef systems, p. 3350. In Insalaco, E., Skelton, P. W., and Palmer, T. J. (eds.), Carbonate Platform Systems: Components and Interactions. Geological Society of London, Special Publication 178.Google Scholar
Pojeta, J. Jr., and Palmer, T. J. 1976. The origin of rock boring in mytilacean pelecypods: Alcheringa, 1:167179.CrossRefGoogle Scholar
Reuss, A. E. 1854. Beiträge zur characteristik der Kreideschichten in den Ostalpen besonders im Gosauthale und am Wolfgangsee. Akademie der Wissenschaften, Wien, Denkschrift der Mathematisch-Naturwissenschaftliche Klasse, 7:1157, pls. 1–31.Google Scholar
Sandy, M. R., and Stanley, G. D. Jr. 1993. Late Triassic brachiopods from the Luning Formation, Nevada, and their palaeobiogeographical significance. Palaeontology, 36:439480.Google Scholar
Senowbari-Daryan, B. 1980. Fazielle und paläontologische Untersuchungen in oberrhätischen Riffen (Feichtenstein- und Gruberriff bei Hintersee, Salzburg, Nördliche Kalpalpen). Facies, 3:1237, 29 pls.CrossRefGoogle Scholar
Senowbari-Daryan, B., and Stanley, G. D. Jr. 1992. Late Triassic thalamid sponges from Nevada. Journal of Paleontology, 66:183193.Google Scholar
Stanley, G. D. Jr. 1979. Triassic carbonate buildups in western North America: comparisions with the Alpine Triassic of Europe. Rivista Italiana Paleontologiae Stratigrafia, 85:877894.Google Scholar
Stanley, G. D. Jr. 1988. The history of Early Mesozoic reef communities: a three step process. Palaios, 3:170183.Google Scholar
Stanley, G. D. Jr. 2001. Introduction to reef ecosystems and their evolution, p. 139. In Stanley, G. D. Jr. (ed.), The History and Sedimentology of Ancient Reef Systems: Topics in Geobiology. Kluwer Academic/Plenum Publishers, New York.Google Scholar
Stanley, G. D. Jr. 2003. The evolution of modern corals and their early history. Earth Science Reviews, 60:195225.CrossRefGoogle Scholar
Stanton, R. J., and Flügel, E. 1989. Problems with reef models: the Late Triassic Steinplatte “reef” (Northern Alps, Salzburg/Tyrol, Austria). Facies, 20:1138.Google Scholar
Stoppani, A. 1857. Studii Geologici e Paleontologici sulla Lombardia del Sacerdote Prof. Antonio Stoppani, Colla, Descrizione di alcune Nuove Specie di Pesci Fossili di Perledo e di altre Località Lombarde, Studii di Cristoforo Bellotti. C. Turati, Milan, xx + 461 p., + fold. tab.Google Scholar
Stoppani, A. 1858–1860. Les Pétrifactions d'Ésino ou Description des Fossiles Appartenent au Dépôt Triasique Supérieur des Environs d'Ésino en Lombardie, Divises en Quatre Monographies Comprenant les Gastéropodes, les Acéphales, les Brachiopodes, les Céphalopodes, les Crinoides, les Zoophytes, et les Amorphozoaires, avec un Carte Géologique et les Figures des Espèces Lithographiees d'après Nature. Joseph Bernardoni, Milan, 151 p., 1 pl. (Esquisse topographique et Géologique des Environs d'Ésino), + 31 pls.Google Scholar
Stoppani, A. 1860–1865. Géologie et Paléontologie des Couches à Avicula contorta en Lombardie, Comprenant des Aperçus sur l'Étage Infraliasien en Lombardie et en Europe en General et Deux Monographies des Fossiles Appartenant à la Zone Supérieure et à la Zone Inférieure des Couches à Avicula contorta en Lombardie, une Note Supplémentaire et Deux Appendices sur l'Infralias du Versant N-O des Alpes, et sur les Faunes aux Limites Supérieures et Inférieures des Couches à Avicula contorta. Joseph Bernardoni, Milan, 267 p., 60 pls., 1 folded table: Table Synoptique de l'Étage Infraliasien. [See Appendice: Sur les Grandes Bivalves Cardiformes aux Limites Supérieures et Inférieures des Couches à A. contorta, Deuxième Partie, Paléontologie, Subsection III, Fossiles du Trias Supérieur ou de la Dolomie a Megalodon Gümbeli, p. 254–260.]Google Scholar
Terquem, M. O. 1855. Paléontologie de l'Étage inférieur de la Formation Liasique de la Province de Luxembourg, Grande-Duché (Hollande), et de Hettange, du Département de la Moselle. Mémoires de la Société Géologique de France, Ser. 2, 5(3):219343, pls. 12–26.Google Scholar
Tommasi, A. 1903. Revisione della fauna a molluschi della Dolomia Principale di Lombardia. Palaeontographica Italica, Memorie di Paleontologia, Bologna, 9:95124.Google Scholar
Vermeij, G. J. 1977. The Mesozoic faunal revolution: evidence from snails, predators, and grazers. Paleobiology, 3:245258.Google Scholar
Vermeij, G. J. 1987. Evolution and escalation: an evolutionary history of life. Princeton University Press, Princeton, 527 p.Google Scholar
Vogel, K. 1993. Bioeroders in Fossil Reefs. Facies, 28:109113.CrossRefGoogle Scholar
Warme, J. E. 1977. Carbonate borers: their role in reef ecology and preservation, p. 261279. In Frost, S. H., Weiss, M. P., and Saunders, J. B. (eds.), Reefs and Related Carbonates: Ecology and Sedimentology. Studies in Geology 4, The American Association of Petroleum Geologists, Tulsa, Oklahoma.Google Scholar
Whitfield, R. P. 1893 [1895]. Contributions to the paleontology of Ohio. Report of the Geological Survey of Ohio, Volume 7, Pt. 2, p. 407494, pl. 13.Google Scholar
Wilson, M. A., and Palmer, T. J. 1988. Nomenclature of a bivalve boring from the Upper Ordovician of the Midwestern United States. Journal of Paleontology, 62:306308.Google Scholar
Wilson, M. A., and Palmer, T. J. 1998. The earliest Gastrochaenolites (Early Pennsylvanian. Arkansas, USA): an Upper Paleozoic bivalve boring? Journal of Paleontology, 72(4):769772.Google Scholar
Wood, R. A. 1999. Reef Evolution. Oxford University Press, Oxford, 414 p.Google Scholar
Yonge, C. M. 1963. Rock-boring organisms, p. 124. In Sognnaes, R. F. (ed.), Mechanisms of Hard Tissue Destruction. Publication no. 75 of the American Association for the Advancement of Science.Google Scholar
Zankl, H. 1969. Der Hohe Göll: Aufbau und Lebensbild eines Dachsteinkalk-Riffes in der Obertrias der nördlichen Kalkalpen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 519:1123, pl. 1–15.Google Scholar
Zapfe, H. 1967. Beiträge zur Paläontologie der nordalpinen Riffe. Die Fauna der Zlambach-Mergel der Fischerwiese bei Aussee, Steiermark (exkl. Coelenterata und Mikrofossilien). Annalen der Naturhistorischen Museums in Wien, 71:413480, 9 pls.Google Scholar