Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T02:54:33.309Z Has data issue: false hasContentIssue false

Insect evolutionary history from Handlirsch to Hennig, and beyond

Published online by Cambridge University Press:  20 May 2016

David Grimaldi*
Affiliation:
Division of Invertebrates, American Museum of Natural History, New York, NY 10024-5192

Abstract

Significant investigators and aspects in the past century of insect paleontology are briefly reviewed. Despite the pervasive influence of the paleoentomologist Willi Hennig in systematic biology, the study of fossil insects remains more descriptive than most other paleontological areas. Hypotheses are reviewed on relationships and chronologies of early divergences in insects (Paleozoic, Lower Mesozoic), particularly living and extinct orders of the lower pterygotes and putative monophyly of the Paleoptera (Odonata + Ephemeroptera). The Dictyoptera (Mantodea, Isoptera, Blattaria) illustrate relationships and discrepencies between stratigraphic record and phylogenetic relationships. Future directions in the field are suggested.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, J., Arillo, A., Barrón, E., Corral, J. C., Grimalt, J., López, J., López, R., Martínez-Delclòs, X., Ortuño, V., Penalver, E., and Trincão, P. R. 2000. A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (northern Spain, Basque-Cantabrian Basin). Journal of Paleontology, 74:158178.CrossRefGoogle Scholar
Azar, D. 2000. Les Ambres Mésozoïques du Liban. Ph.D. dissertation, University of Paris.Google Scholar
Bechly, G. 1997. New fossil odonates from the Upper Triassic of Italy, with a redescription of Italophlebia gervasutti, and a reclassification of Triassic dragonflies (Insecta: Odonata). Rivista Museo Civica Scienza Naturali “E. Caffi”, 19:3170.Google Scholar
Bechly, G. 1998. Phylogenetic systematics of Odonata. Website (Staatliches Museum für Naturkunde, Stuttgart): http://members.tripod.de/Gbechly.Google Scholar
Boudreaux, H. B. 1979. Arthropod Phylogeny, with Special Reference to Insects. John Wiley and Sons, New York.Google Scholar
Brongniart, C. 1878. Note suivant sur la découverte d'un Orthoptère coureur de la famille des Phasmiens (Protophasma dumasi) dans les terrains supra-houillers de Commentry (Allier). Bulletin des seances de la Société entomologique de France, 47:5760.Google Scholar
Brongniart, C. 1893. Recherches pour servir à l'histoire des insectes fossiles des temps primaires, précédées d'une étude sur la nervation des ailes des insectes. University of Paris, Faculty of Sciences, thesis 821, 495 p.CrossRefGoogle Scholar
Brower, A. V. Z., Desalle, R., and Vogler, A. 1996. Gene trees, species trees, and systematics: a cladistic perspective. Annual Review of Ecology and Systematics, 27:423450.CrossRefGoogle Scholar
Carpenter, F. M. 1987. Review of the extinct family Syntonopteridae (Order uncertain). Psyche, 94:373388.CrossRefGoogle Scholar
Carpenter, F. M. 1992. Superclass Hexapoda. Volumes 3, 4. In Treatise on Invertebrate Paleontology, Pt. R, Arthropoda 4. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Carpenter, F. M., and Burnham, L. 1985. The Geological record of insects. Annual Review of Earth and Planetary Sciences, 13:297314.CrossRefGoogle Scholar
Carpenter, J. M., and Wheeler, W. C. 1999. Cladística numérica, análisis simultáneo y filogenia de Hexápodos. Boletin de la Sociedad Entomológica Aragonesa, 26:333346.Google Scholar
Caterino, M. S., Cho, S., and Sperling, F. A. H. 1999. The current state of insect molecular systematics: a thriving tower of Babel. Annual Review of Entomology, 45:154.CrossRefGoogle Scholar
Crane, P. 1985. Phylogenetic analysis of seed plants and the origin of angiosperms. Annals of the Missouri Botanical Garden, 72:716793.CrossRefGoogle Scholar
Crane, P., Friis, E. M., Pedersen, K. R., and Drinnan, A. N. 1995. The origin and early diversification of angiosperms. Nature, 374:2733.CrossRefGoogle Scholar
Engel, M. S. 2001. A monograph of the Baltic amber bees and evolution of the Apoidea (Hymenoptera). Bulletin of the American Museum of Natural History, 259, 192 p.2.0.CO;2>CrossRefGoogle Scholar
Engel, M. S., and Grimaldi, D. 2000. A winged Zorotypus in Miocene amber from the Dominican Republic, with discussion on relationships of and within the order. Acta Geológica Hispanica, 35:149164.Google Scholar
Friis, E. M., and Skarby, A. 1981. Structurally preserved angiosperm flowers from the Upper Cretaceous of southern Sweden. Nature, 291:163164.CrossRefGoogle Scholar
Gauthier, J. 1986. Saurischian monophyly and the origin of birds, p. 155. In Padian, K. (ed.), The Origin of Birds and the Evolution of Flight. Volume 8. Memoirs of the California Academy of Sciences.Google Scholar
Grandcolas, P. 1994. Phylogenetic systematics of the subfamily Polyphaginae, with the assignment of Cryptocercus Scudder, 1862 to this taxon (Blatteria, Blaberoidea, Polyphagidae). Systematic Entomology, 19:145158.Google Scholar
Grandcolas, P. 1996. The phylogeny of cockroach families: a cladistic appraisal of morphoanatomical data. Canadian Journal of Zoology, 74:508527.CrossRefGoogle Scholar
Grandcolas, P., and D'haese, C. 2001. The phylogeny of cockroach families: is the current molecular hypothesis robust? Cladistics, 17:4855.Google Scholar
Grimaldi, D. 1997. A fossil mantis (Insecta: Mantodea) in Cretaceous amber of New Jersey, with comments on the early history of the Dictyoptera. American Museum Novitates, 3024, 11 p.Google Scholar
Grimaldi, D. 2000. The Mesozoic radiations of insects and origins of the modern fauna. Proceedings of the XXI International Congress Of Entomology, Iguassu, Brazail, Aug. 17–26, 2000Google Scholar
Grimaldi, D., (ed.). 2000. Studies on Fossils in Amber, with Particular Reference to the Cretaceous of New Jersey. Backhuys, Leiden.Google Scholar
Grimaldi, D. In Press. Fossil record. In Encyclopedia Of Insects. Academic Press, New York.Google Scholar
Grimaldi, D., and Agosti, D. 2000. A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. Proceedings of the National Academy of Sciences, 97:1367813683.CrossRefGoogle ScholarPubMed
Grimaldi, D., and Cumming, J. 1999. Brachyceran Diptera in Cretaceous ambers and Mesozoic diversification of the Eremoneura. Bulletin of the American Museum of Natural History, 239, 124 p.Google Scholar
Grimaldi, D., Agosti, D., and Carpenter, J. M. 1997. New and rediscovered primitive ants (Hymenoptera: Formicidae) in Cretaceous amber from New Jersey, and their phylogenetic relationships. American Museum Novitates, 3208, 43 p.Google Scholar
Grimaldi, D., Bonwich, E., Delannoy, M., and Doberstein, S. 1994. Electron microscropic studies of mummified tissues in amber fossils. American Museum Novitates, 3097, 31 p.Google Scholar
Handlirsch, A. 1906–1908. Die fossilen Insekten und die Phylogenie der rezenten Formen: Ein Handbuch für Palaontologen und Zoologen. Engelmann, Leipzig.Google Scholar
Hennig, W. 1965. Die Acalyptratae des Baltischen Bernsteins und ihre Bedeutung für die Erforschung der phylogenetischen Entwicklung dieser Dipteren-Gruppe. Stuttgarter Beiträge zur Naturkunde, 145, 215 p.Google Scholar
Hennig, W. 1981. Insect Phylogeny. Translated and edited by Adrian C. Pont, revisionary notes by Dieter Schlee and 9 collaborators. John Wiley and Sons, New York.Google Scholar
Hörnschemeyer, T. 1998. Morphologie und Evolution des Flügelgelenks der Coleoptera und Neuropterida. Bonner Zoologisches Monographien, 43, 126 p.Google Scholar
Jarzembowski, E. A., and Ross, A. J. 1996. Insect origination and extinction in the Phanerozoic, p. 6578. In Hart, M. B. (ed.), Biotic Recovery from Mass Extinction Events. Geological Society Special Publications, 102.Google Scholar
Kambhampati, S. 1995. A phylogeny of cockroaches and related insects based on DNA sequence of mitochondrial ribosomal RNA genes. Proceedings of the National Academy of Sciences, USA, 92:20172020.CrossRefGoogle ScholarPubMed
Kambhampati, S. 1996. Phylogenetic relationships among cockroach families inferred from mitochondrial 12S rRNA gene sequence. Systematic Entomology, 21:8998.Google Scholar
Klass, K. D. 1997. The ovipositor of Dictyoptera (Insecta): Homology and ground-plan of the main elements. Zoologisches Anzeiger, 236:69101.Google Scholar
Kristensen, N. P. 1975. The phylogeny of hexapod “orders.” A critical review of recent accounts. Zeitschrift für Zoologisches Systematisches Evolutionforschungen, 13:144.Google Scholar
Kristensen, N. P. 1991. Phylogeny of extant hexapods, p. 125140. In CSIRO, (ed.), The Insects of Australia (second edition). Volume 1. Cornell University Press, Ithaca, New York.Google Scholar
Kristensen, N. P. 1999. Phylogeny of endopterygote insects, the most successful lineage of living organisms. European Journal of Entomology, 96:237253.Google Scholar
Kukalová-Peck, J. 1985. Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Canadian Journal of Zoology, 63:933955.CrossRefGoogle Scholar
Kukalová-Peck, J. 1987. New Carboniferous Diplura, Monura, and Thysanura, the hexapod groundplan, and the role of the thoracic lobe in the origin of wings (Insecta). Canadian Journal of Zoology, 65:23272345.CrossRefGoogle Scholar
Kukalová-Peck, J. 1991. Fossil history and the evolution of hexapod structures, p. 141179. In CSIRO, (ed.), The Insects Of Australia, (second edition). Volume 1. Cornell University Press, Ithaca, New York.Google Scholar
Kukalová-Peck, J. 1997. Arthropod phylogeny and ‘basal’ morphological structures, p. 249268. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.Google Scholar
Kukalová-Peck, J., and Brauckmann, C. 1992. Most Palaeozoic Protorthoptera are ancestral hemipteroids: Major wing braces as clues to a new phylogeny of Neoptera (Insecta). Canadian Journal of Zoology, 70:24522473.CrossRefGoogle Scholar
Labandeira, C. C., and Sepkoski, J. J. Jr. 1993. Insect diversity in the fossil record. Science, 261:310315.CrossRefGoogle ScholarPubMed
Lo, N., Tokuda, G., Watanabe, H., Rose, H., Slaytor, M., Maekawa, K., Bandi, C., and Noda, H. 2000. Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches. Current Biology, 10:801804.CrossRefGoogle ScholarPubMed
Martynov, A. V. 1925. Uber zwei Grundtypen der Flügel bei den Insekten und ihre Evolution. Zeitschrift für Morphologie und Ökologie der Tiere, 4:465501.CrossRefGoogle Scholar
Martynov, A. V. 1938. Étude sur l'Histoire géologique et de phylogénie des ordres des insectes (Pterygota): 1 partie, Palaeoptera et Neoptera-Polyneoptera. Trudy Paleontologicheskogo instituta akademii nauk SSSR, 7(4):1150.Google Scholar
McAlpine, J. F., and Martin, J. E. H. 1969. Canadian amber: A paleontological treasure chest. Canadian Entomologist, 101:819838.CrossRefGoogle Scholar
McKenna, M. C., and Bell, S. K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York.Google Scholar
McKittrick, F. A. 1964. Evolutionary studies of cockroaches. Cornell University Agricultural Experiment Station Memoir, 189, 197 p.Google Scholar
Padian, K., and Chiappe, L. M. 1998. The origin and early evolution of birds. Biological Reviews, 73:142.CrossRefGoogle Scholar
Rasnitsyn, A. P. 1999. Taxonomy and morphology of Dasyleptus Brogniart, 1885, with description of a new species (Insecta: Machilidae: Dasyleptidae). Russian Entomological Journal, 8:145154.Google Scholar
Riek, E. F., and Kukalová-Peck, J. 1984. A new interpretation of dragonfly wing venation based upon Early Upper Carboniferous fossils from Agentina (Insecta: Odonatoidea) and basic character states in pterygote wings. Canadian Journal of Zoology, 62:11501166.CrossRefGoogle Scholar
Rohdendorf, B. B. 1962. Subphylum Mandibulata, p. 17374. In Orlov, Y. A. (ed.), Fundamentals of Paleontology. Izdatel'stvo Akademii Nauk SSSR, Moscow. (In Russian)Google Scholar
Rohdendorf, B. B. 1964. Historical Development of the Diptera. Trudy Paleontologischeskogo instituta akademii nauk SSSR, 100, 311 p. (In Russian)Google Scholar
Rohdendorf, B. B., and Rasnitsyn, A. P. (eds.). 1980. Historical Development of the Class Insecta. Trudy Paleontologicheskogo Instituta AN SSSR, Moscow. (In Russian)Google Scholar
Sehnal, F. P. Švácha, and Zrzavý, J. 1996. Evolution of insect metamorphosis, p. 358. In Gilbert, L. I., Tata, J. R., and Atkinson, B. G. (eds.), Metamorphosis, Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego.Google Scholar
Sereno, P. C. 1997. The origin and evolution of dinosaurs. Annual Review of Earth and Planetary Sciences, 25:435489.CrossRefGoogle Scholar
Sharov, A. G. 1966. Basic arthropodan stock with special reference to insects. Pergamon Press, Oxford.Google Scholar
Shear, W. A. 1991. The early development of terrestrial ecosystems. Nature, 351:283289.CrossRefGoogle Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85, 350 p.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record: documenting evolutionary patterns. Blackwell, London.CrossRefGoogle Scholar
Thorne, B. L., and Carpenter, J. M. 1992. Phylogeny of the Dictyoptera. Systematic Entomology, 17:253268.CrossRefGoogle Scholar
Thorne, B. L., Grimaldi, D. A., and Krishna, K. 2000. Early fossil history of the termites, p. 7794. In Abe, T., Bignell, D. E., Higashi, M. (eds.), Termites: Evolution, Sociality, Symbiosis, Ecology. Kluwer, Dordrecht.CrossRefGoogle Scholar
Wheeler, W. C., Whiting, M. C., Wheeler, Q. D., and Carpenter, J. M. 2001. The phylogeny of the extant hexapod orders. Cladistics, 17:113169.CrossRefGoogle Scholar
Willmann, R. 1997. Advances and problems in insect phylogeny, p. 269279. In Fortey, R. and Thomas, R. H. (eds.), Arthropod Relationships. Chapman and Hall, London.Google Scholar
Willmann, R. 1999. The Upper Carboniferous Lithoneura lameerei (Insecta, Ephemeroptera?). Paläontologische Zeitschrift, 73:289302.CrossRefGoogle Scholar
Wilson, E. O. 1992. The Diversity of Life. W. W. Norton, New York.Google Scholar
Wooton, R. J. 1981. Paleozoic insects. Annual Review of Entomology, 26:319344.CrossRefGoogle Scholar