Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T02:21:17.177Z Has data issue: false hasContentIssue false

The ichnogenus Curvolithus revisited

Published online by Cambridge University Press:  14 July 2015

Luis A. Buatois
Affiliation:
Kansas Geological Survey, 1930 Constant Avenue, Campus West, The University of Kansas, Lawrence 66047
M. Gabriela Mangano
Affiliation:
Kansas Geological Survey, 1930 Constant Avenue, Campus West, The University of Kansas, Lawrence 66047
Radek Mikuláš
Affiliation:
Department of Earth Sciences, University of Liverpool, PO Box 147, Liverpool L693BX, United Kingdom Geological Institute, Academy of Sciences of Czech Republic, Rozvojova 135, 165 00, Praha 6, Czech Republic
Christopher G. Maples
Affiliation:
Kansas Geological Survey, 1930 Constant Avenue, Campus West, The University of Kansas, Lawrence 66047

Abstract

The ichnogenus Curvolithus Fritsch, 1908, originally described from the Ordovician of the Prague Basin, typically comprises ribbonlike or tonguelike, flattened, endostratal traces with three rounded lobes on the upper surface. However, considerable confusion persists regarding the ichnotaxonomic status and diagnostic features of its ichnospecies. The type specimens of this ichnotaxon, overlooked in most subsequent reports, are redescribed herein. Curvolithus multiplex Fritsch, 1908, the type species, is retained for specimens with a trilobate upper surface and a quadralobate lower surface, in contrast to the criteria adopted by subsequent authors. The other ichnospecies originally proposed from the type locality, C. gregarius Fritsch, 1908, actually consists of a series of grouped parallel scratch marks forming ridges and should be removed from Curvolithus. Subsequently, four ichnospecies were defined: C.? davidis Webby 1970; C. annulatus Badve and Ghare 1978; C. aequus Walter et al. 1989; and C. manitouensis Maples and Suttner 1990. Curvolithus? davidis shows the typical trilobation of Curvolithus apparently in its lower surface, but the morphology of the upper surface is uncertain. Accordingly, it does not warrant ichnospecific assessment, and is regarded as a nomen dubium. The nature of the annulations on the trilobate upper surface of C. annulatus is unclear, and this ichnospecies is also best considered as a nomen dubium.Curvolithus aequus has a bilobate lower surface and probably represents washed out specimens of Didymaulichnus. Finally, C. manitouensis comprises specimens with a smooth, trilobate upper surface and a smooth, quadralobate lower surface, and is best regarded as a junior synonym of C. multiplex. Curvolithus multiplex has been used incorrectly for Curvolithus with a trilobate upper surface and a trilobate to unilobate lower surface. The new ichnospecies, Curvolithus simplex, is proposed herein for such traces. Curvolithus is interpreted as a locomotion trace (Repichnia) of endostratal carnivores, possibly gastropods, flatworms, or nemerteans. Curvolithus is a component of the Cruziana ichnofacies in shallow-marine facies, either of normal salinity or slightly brackish, in the latter case typically associated with fan deltas.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aceñolaza, F. G., Buatois, L. A., and Aceñolaza, G. F. 1994. Shallow marine trace fossils from the Lower Silurian of Sierra de Zapla, Jujuy, northwest Argentina. 2nd International Meeting du projet IGCP N° 351 “Early Paleozoic Evolution in NW Gondwana.” Abstract. Rabat, p. 67.Google Scholar
Alexander, R. M. 1979. The Invertebrates. Cambridge University Press, Cambridge. 562 p.Google Scholar
Alonso, R. N., Malanca, S., and Sureda, R. J. 1982. Consideraciones sobre el Ordovícico en la Sierra de Aguilar, Jujuy, Argentina. Revista del Instituto de Ciencias Geológicas, 5:121.Google Scholar
Badve, R. M. and Ghare, M. A. 1978. Jurassic ichnofauna of Kutch-I. Biovigyanam, 4:125140.Google Scholar
Barnes, R. D. 1980. Invertebrate Zoology. Saunders College, Philadelphia. 1089 p.Google Scholar
Bromley, R. G. 1990. Trace fossils. Biology and Taphonomy. Unwin Hyman Ltd., London. 280 p.Google Scholar
Bromley, R. G. 1996. Trace fossils. Biology, Taphonomy and Applications. Chapman and Hall, London. 361 p.Google Scholar
Bryant, I. D., and Pickerill, R. K. 1990. Lower Cambrian trace fossils from the Buen Formation of central North Greenland: preliminary observations. Grønlands Geologiske Undersøgelse, Rapport, 147:4462.Google Scholar
Chamberlain, C. K. 1971a. Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. Journal of Paleontology, 45:212246.Google Scholar
Chamberlain, C. K. 1971b. Bathymetry and paleoecology of Ouachita Geosyncline of southeastern Oklahoma as determined from trace fossils. The American Association of Petroleum Geologists, Bulletin, 55:3450.Google Scholar
Chlupác, I. 1993. Geology of the Barrandian—a Field Trip Guide. Senckenberg-Buch 69. Frankfurt am Main, Waldemar Kramer. 163 p.Google Scholar
Dam, G. 1990a. Taxonomy of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Bulletin of the Geological Society of Denmark, 38:119144.CrossRefGoogle Scholar
Dam, G. 1990b. Paleoenvironmental significance of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Palaeogeography, Palaeoclimatology, Palaeoecology, 79:221248.Google Scholar
Eagar, R. M. C., Baines, J. G., Collinson, J. D., Hardy, P. G., Okolo, S. A., and Pollard, J. E. 1985. Trace fossil assemblages and their occurrence in Silesian (Mid-Carboniferous) deltaic sediments of the central Pennine Basin, England, p. 99149. In Curran, H. A. (ed.), Biogenic structures: Their Use in Interpreting Depositional Environments. Society of Economic Paleontologists and Mineralogists Special Publication, 35. Tulsa.Google Scholar
Fedonkin, M. A. 1977. Precambrian-Cambrian ichnocoenoses of the east European platform, p. 183194. In Crimes, T. P., and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue, 9. Seel House Press, Liverpool.Google Scholar
Fillion, D. and Pickerill, R. K. 1990. Ichnology of the Lower Ordovician Bell Island and Wabana Groups of eastern Newfoundland. Palaeontographica Canadiana, 7:1119.Google Scholar
Fritsch, A. 1908. Problematica Silurica. Systême Silurien du Centre de la Bohême par Joachim Barrande Suite Éditée-aux Frais du Barrande Fonds. Prague, 24 p.Google Scholar
Fürsich, F. T., and Heinberg, C. 1983. Sedimentology, biostratinomy, and paleoecology of an Upper Jurassic offshore sand bar complex. Bulletin of the Geological Society of Denmark, 32:6795.Google Scholar
Hakes, W. G. 1976. Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. The University of Kansas Paleontological Contributions, 63:146.Google Scholar
Hakes, W. G. 1977. Trace fossils in Late Pennsylvanian cyclothems, Kansas, p. 209226. In Crimes, T. P., and Harper, J. C. (eds.), Trace Fossils 2. Geological Journal Special Issue, 9. Seel House Press, Liverpool.Google Scholar
Hakes, W. G. 1985. Trace fossils from brackish-marine shales, Upper Pennsylvanian of Kansas, U.S.A., p. 2135. In Curran, H. A. (ed.), Biogenic Structures: Their use in interpreting depositional environments. Society of Economic Paleontologists and Mineralogists, Special Publication, 35.Google Scholar
Häntzschel, W. 1962. Trace fossils and Problematica, p. W177W245. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea. Geological Society of America and University of Kansas Press.Google Scholar
Häntzschel, W. 1965. Vestigia Invertebratorum et Problematica. Fossilium Catalogus. 1: Animalia. Pars, 108:1140.Google Scholar
Häntzschel, W. 1975. Trace fossil and Problematica, p. W1W269. In Teichert, C., (ed.), Treatise on Invertebrate Paleontology, Part W, Miscellanea, Supplement 1. Geological Society of America and University of Kansas Press.Google Scholar
Häntzschel, W., and Reineck, H. E. 1968. Fazies-Untersuchungen im Hettangium von Helmstedt (Niedersachsen). Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg, Heft, 37:539.Google Scholar
Heinberg, C. 1970. Some Jurassic trace fossils from Jameson Land (East Greenland), p. 227234. In Crimes, T. P., and Harper, J. C. (eds.), Trace Fossils. Geological Journal Special Issue, 3. Seel House Press, Liverpool.Google Scholar
Heinberg, C. 1973. The internal structure of the trace fossils Gyrochorte and Curvolithus . Lethaia, 6:227238.Google Scholar
Heinberg, C., and Birkelund, T. 1984. Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, central East Greenland. Journal of Paleontology, 58:362397.Google Scholar
Houck, K., and Lockley, M. 1986. A Field Guide to the Pennsylvanian biofacies of the Minturn Formation, Bond-McCoy area, Central Colorado Trough. University of Colorado at Denver, Geology Department Publication. 64 p.Google Scholar
Keij, A. J. 1965. Miocene trace fossils from Borneo. Palaeontologische Zeitschrift, 39:220228.CrossRefGoogle Scholar
Kulkarni, K. G., and Ghare, M. A. 1991. Locomotory traces (Repichnia) from the Jurassic sequence of Kutch, Gujarat. Journal of the Geological Society of India, 37:374387.Google Scholar
Lockley, M. G., Rindsberg, A. K., and Zeiler, R. M. 1987. The paleoenvironmental significance of the nearshore Curvolithus ichnofacies. Palaios, 2:255262.CrossRefGoogle Scholar
Mangano, M. G., Buatois, L. A., Maples, C. G., and West, R. 1996. Trace fossils from an Upper Carboniferous tidal shoreline (Stull Shale Member of Eastern Kansas). 30th International Geological Congress, Beijing. Abstract Volume 2, p. 133.Google Scholar
Maples, C. G., and Suttner, L. J. 1990. Trace fossils and marinenonmarine cyclicity in the Fountain Formation (Pennsylvanian: Morrowian/Atokan) near Manitou Springs, Colorado. Journal of Paleontology, 64:859880.Google Scholar
Metz, R. 1989. Scoyenia ichnofacies from the Passaic Formation (Upper Triassic) near Milford, New Jersey. Northeastern Geology, 11:212217.Google Scholar
Metz, R. 1990. Discussion. Scoyenia ichnofacies from the Passaic Formation (Upper Triassic) near Milford, New Jersey. Northeastern Geology, 12:159161.Google Scholar
Mikuláš, R. 1987. Ichnofosilie v kosovském souvrstvi ceského svrchniho ordoviku. Diplomová práce Prírodoved. fak. Univ. Karl. Praha.Google Scholar
Mikuláš, R. 1992. Trace fossils from the Kosov Formation of the Bohemian Upper Ordovician. Sbornik geologickych ved, Paleontologie, 32:954.Google Scholar
Mikuláš, R. 1994a. Trace fossils at the Arenig-Llanvirn boundary (Ordovician, Czech Republic). Journal of the Czech Geological Society, 39:205210.Google Scholar
Mikuláš, R. 1994b. New finds of trace fossils from the Bohdaled and Králuv Dvur Formations (Late Ordovician, Barrandian area, Czech Republic). Journal of the Czech Geological Society, 39:303312.Google Scholar
Mikuláš, R. in press. Trace fossils from the Letná Formation (Ordovician, Czech Republic). Sbornik geologickych ved, Paleontologie.Google Scholar
Müller, A. H. 1969. Über ein neues Ichnogenus (Tambia n.g.) und andere Problematica aus dem Rotliegenden (Unterperm) von Thüringen. Deutsch Akademie der Wissenchaften zu Berlin Abhandlungen; Monatsberichte, Geologie und Mineralogie, 11:922932.Google Scholar
Narbonne, G. M., and Myrow, P. M. 1988. Trace fossil biostratigraphy in the Precambrian-Cambrian boundary interval, p. 7276. In Landing, E., Narbonne, G. M., and Myrow, P. (eds.), Trace Fossils, Small Shelly Fossils and the Precambrian-Cambrian boundary. New York State Museum, Bulletin, 463.Google Scholar
Narbonne, G. M., Myrow, P. M., and Anderson, M. M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences, 24:12771293.CrossRefGoogle Scholar
Osgood, R. G. Jr. 1970. Trace fossils of the Cincinnati area. Paleontographica Americana, 6:279444.Google Scholar
Pickerill, R. K. 1990. Discussion. Scoyenia ichnofacies from the Passaic Formation (Upper Triassic) near Milford, New Jersey. Northeastern Geology, 12:156159.Google Scholar
Pickerill, R. K., and Peel, J. S. 1990. Trace fossils from the Lower Cambrian Bastion Formation of North-East Greenlans. Grønlands Geologiske Undersøgelse, Rapport, 147:543.Google Scholar
Rindsberg, A. K. 1994. Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous Formations. Geological Survey of Alabama Bulletin, 158:1107.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. Edited by Craig, G. Y. The University of Chicago Press, Edinburgh. 568 p.Google Scholar
Seilacher, A. 1955. Spuren und Fazies im Unterkambrium, p. 373399. In Schindewolf, O. H., and Seilacher, A. (eds.), Beitrage zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademiee der Wissenschaften und der Literatur zu Mainz, mathematisch-naturwissenschaftliche Klasse, Abhandlungen, 10.Google Scholar
Seilacher, A. 1990. Paleozoic trace fossils, p. 649670. In Said, R. (ed.), The Geology of Egypt. A. A. Balkema, Rotterdam.Google Scholar
Suttner, L. J. 1994. Sedimentology and ichnology of the coarsegrained delta deposits in the Fountain Formation (Pennsylvanian) near Colorado Springs, Colorado. American Association of Petroleum Geologists Annual Convention Field Trip Guidebook, 13:123.Google Scholar
Walter, M. R., Elphinstone, R., and Heys, G. R. 1989. Proterozoic and Early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa, 13:209256.CrossRefGoogle Scholar
Webby, B. D. 1970. Late Precambrian trace fossils from New South Wales. Lethaia, 3:79109.Google Scholar
Yao, P. 1993. A new trace fossil genus from the Lower Cretaceous of Tibet. Professional Papers of Stratigraphy and Paleontology, 24:180185.Google Scholar