Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T14:14:07.910Z Has data issue: false hasContentIssue false

Heritability and intraspecific heterochrony in Ordovician bryozoans from environments differing in diversity

Published online by Cambridge University Press:  19 May 2016

Joseph F. Pachut*
Affiliation:
Department of Geology, Indiana University-Purdue University at Indianapolis, 425 Agnes Street, Indianapolis 46202

Abstract

Environmental conditions affect both the character and variability of developmental patterns (=astogeny) within each of four species of Ordovician bryozoans. Regressions between pairs of stereological measurements for populations from both high-and low-diversity habitats differ significantly in 79 percent of all comparisons. Deviations from a rigid pattern of development, measured as dispersion from regression, were greater in species populations from low diversity settings in 77 percent of comparisons. Therefore, both developmental patterns and their variability differ intraspecifically along a diversity gradient in representatives of four bryozoan families. Additionally, dispersion values were larger in younger rather than older colonies in two species irrespective of diversity level, thus suggesting an age-related reduction in variation.

Changes in developmental trajectories indicate that colonies from low-diversity settings are generally paedomorphic relative to conspecific populations from high-diversity habitats. The heritability of these characters and developmental patterns, estimated using variance partitioning techniques, is greater in high-diversity associations. These findings suggest that character state modifications dependent upon astogeny, or a consequence of astogenetic modifications, are more heritable in high-diversity settings. However, if the environment can cause facultative heterochrony, the possibility of fixing such patterns in subsequent generations is increased, although the mechanism for accomplishing this is presently unknown.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology, 5:296317.CrossRefGoogle Scholar
Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia, 19:3351.Google Scholar
Anstey, R. L. 1987. Astogeny and phylogeny: evolutionary heterochrony in Paleozoic bryozoans. Paleobiology, 13:2043.Google Scholar
Anstey, R. L., and Bartley, J. W. 1984. Quantitative stereology: an improved thin section biometry for bryozoans and other colonial organisms. Journal of Paleontology, 58:612625.Google Scholar
Anstey, R. L., Pachut, J. F., and Prezbindowski, D. R. 1976. Morphogenetic gradients in Paleozoic bryozoan colonies. Paleobiology, 2:131146.CrossRefGoogle Scholar
Anstey, R. L., Pachut, J. F., and Perry, T. G. 1973. Eden Shale bryozoans: a numerical study (Ordovician, Ohio Valley). Michigan State University, Publications of the Museum, Paleontological Series, 1, 80 p.Google Scholar
Bartley, J. W., and Anstey, R. L. 1983. Cyclic growth in lower Paleozoic stenolaemate bryozoans. Geological Society of America, Abstracts with Programs, 15:523.Google Scholar
Bartley, J. W., and Brunner, C. M. 1982. Nested growth rhythms in Paleozoic bryozoans. Geological Society of America, Abstracts with Programs, 14:267.Google Scholar
Berven, K. A., Gill, D. E., and Smith-Gill, S. J. 1979. Countergradient selection in the green frog, Rana clamitans. Evolution, 33:609623.CrossRefGoogle ScholarPubMed
Boardman, R. S. 1960. Trepostomatous Bryozoa of the Hamilton Group of New York. U.S. Geological Survey Professional Paper 340, 87 p.Google Scholar
Boardman, R. S., Cheetham, A. H., Blake, D. B., Utgaard, J., Karklins, O. L., Cook, P. L., Sandberg, P. A., Lutaud, G., and Wood, T. S. 1983. In Robison, R. A. (ed.), Treatise on Invertebrate Paleontology, Pt. G, Bryozoa, Revised. Geological Society of America and University of Kansas Press, Lawrence, 625 p.Google Scholar
Boardman, R. S., Cheetham, A. H., Blake, D. B., Utgaard, J., Karklins, O. L., Cook, P. L., Sandberg, P. A., Lutaud, G., Cheetham, A. H., and Cook, P. L. 1970. Intracolony variation and the genus concept in Bryozoa. North American Paleontological Convention, Chicago, 1969, Proceedings C:294320.Google Scholar
Bork, K. B., and Perry, T. G. 1967. Bryozoa (Ectoprocta) of Champlainian Age (Middle Ordovician) from northwestern Illinois and adjacent parts of Iowa and Wisconsin. Journal of Paleontology, 41:13651392.Google Scholar
Bork, K. B., and Perry, T. G. 1968. Bryozoa (Ectoprocta) of Champlainian Age (Middle Ordovician) from northwestern Illinois and adjacent parts of Iowa and Wisconsin. Part II. Bythopora, Diplotrypa, Hemiphragma, Heterotrypa, Stigmatella, Eridotrypa, and Nicholsonella. Journal of Paleontology, 42:337355.Google Scholar
Bretsky, P. W., and Lorenz, D. M. 1970. Adaptive response to environmental stability: a unifying concept in paleoecology. North American Paleontological Convention, Chicago, 1969, Proceedings E:522550.Google Scholar
Brown, G. D. Jr., and Daly, E. J. 1985. Trepostome Bryozoa from the Dillsboro Formation (Cincinnatian Series) of southeastern Indiana. Indiana Geological Survey, Special Report 33, 95 p.Google Scholar
Corneliussen, E. F., and Perry, T. G. 1973. Monotrypa, Hallopora, Amplexopora, and Hennigopora (Ectoprocta) from the Brownsport Formation (Niagaran), western Tennessee. Journal of Paleontology, 47:151220.Google Scholar
Crow, J. F. 1986. Basic Concepts in Population, Quantitative, and Evolutionary Genetics. W. H. Freeman Co., San Francisco, 273 p.Google Scholar
Cuffey, R. J. 1967. Bryozoan Tabulipora carbonaria in Wreford Megacyclothem (Lower Permian) of Kansas. University of Kansas Paleontological Contributions, Bryozoa, Article 1, 96 p.Google Scholar
Dobzhansky, T., Ayala, F. J., Stebbins, G. L., and Valentine, J. W. 1977. Evolution. W. H. Freeman and Co., San Francisco, 572 p.Google Scholar
Dommergues, J.-L., David, B., and Marchand, D. 1986. Les relations ontogenese–phylogenese: applications palaeontologiques. Geobios, 19:335356.Google Scholar
Echelle, A. A., and Kornfield, I. (eds.). 1984. Evolution of Fish Species Flocks. University of Maine Press, Orono, 257 p.Google Scholar
Edgecomb, G. D., and Chatterton, B. D. E. 1987. Heterochrony in the Silurian radiation of encrinurine trilobites. Lethaia, 20:337351.Google Scholar
Farmer, J. D., and Rowell, A. J. 1973. Variation in the bryozoan Fistulipora decora (Moore and Dudley) from the Beil Limestone of Kansas, p. 377394. In Boardman, R. S., Cheetham, A. S., and Oliver, W. A. Jr. (eds.), Animal Colonies. Dowden, Hutchinson and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Goodman, D. 1975. The theory of diversity-stability relationships in ecology. Quarterly Review of Biology, 50:237266.CrossRefGoogle Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. Harvard University Press, Cambridge, 501 p.Google Scholar
Hickey, D. R. 1988. Bryozoan astogeny and evolutionary novelties: their role in the origin and systematics of the Ordovician monticuliporid trepostome genus Peronopora. Journal of Paleontology, 62:180203.Google Scholar
Huston, M. 1979. A general hypothesis of species diversity. American Naturalist, 113:81101.CrossRefGoogle Scholar
Imbrie, J. 1956. Biometrical methods in the study of invertebrate fossils. Bulletin of the American Museum of Natural History, 108:214252.Google Scholar
Jablonski, D., and Bottjer, D. J. 1983. Soft-bottom epifaunal suspension-feeding assemblages in the Late Cretaceous: implications for the evolution of benthic paleocommunities, p. 747812. In Tevesz, M. J. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.Google Scholar
Jablonski, D., Gould, S. J., and Raup, D. M. 1986. The nature of the fossil record: a biological perspective, p. 722. In Raup, D. M. and Jablonski, D. (eds.), Patterns and Processes in the History of Life. Springer-Verlag, Berlin.Google Scholar
Key, M. M. Jr. 1985. Environmental stability and morphologic variation in the bryozoan Homotrypa obliqua. Geological Society of America, Abstracts with Programs, 17:628.Google Scholar
Key, M. M. Jr. 1987. Partitioning of morphologic variation across stability gradients in Upper Ordovician trepostomes, p. 145152. In Ross, J. P. R. (ed.), Bryozoa: Present and Past. Western Washington University, Bellingham.Google Scholar
Levins, R. 1969. Thermal acclimation and heat resistance in Drosophila species. American Naturalist, 103:483499.Google Scholar
Levinton, J. S. 1970. The paleoecological significance of opportunistic species. Lethaia, 3:6978.Google Scholar
Levinton, J. S. 1982. Marine Ecology. Prentice-Hall, Englewood Cliffs, New Jersey, 526 p.Google Scholar
MacDaniel, R. P. 1976. Upper Ordovician sedimentary and benthic community patterns of the Cincinnati Arch area. Unpubl. Ph.D. dissertation, University of Chicago, Chicago, Illinois, 181 p.Google Scholar
Mahan, T. K. 1980. Variations in the depositional environment of the lower Cincinnatian Kope Formation. Unpubl. , Western Michigan University, Kalamazoo, 158 p.Google Scholar
McKinney, M. L. 1984. Allometry and heterochrony in an Eocene echinoid lineage: morphological change as a by-product of size selection. Paleobiology, 10:207219.CrossRefGoogle Scholar
McKinney, M. L. 1986. Ecological causation of heterochrony: a test and implications for evolutionary theory. Paleobiology, 12:282289.Google Scholar
McNamara, K. J. 1984. Taxonomy and evolution of the Cainozoic spatangoid echinoid Protenaster. Palaeontology, 28:311330.Google Scholar
McNamara, K. J. 1986. A guide to the nomenclature of heterochrony. Journal of Paleontology, 60:413.CrossRefGoogle Scholar
Meyer, A. 1987. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implications for speciation in cichlid fishes. Evolution, 41:13571369.Google Scholar
Pachut, J. F. 1982. Morphologic variation within and among genotypes in two Devonian bryozoan species: an independent indicator of paleostability? Journal of Paleontology, 56:703716.Google Scholar
Pachut, J. F. 1987. Population genetics of four species of Ordovician bryozoans: stereology and jackknifed analysis of variance. Journal of Paleontology, 61:927941.Google Scholar
Pachut, J. F. and Anstey, R. L. 1979. A developmental explanation of stability-diversity-variation hypotheses: morphogenetic regulation in Ordovician bryozoan colonies. Paleobiology, 5:168187.Google Scholar
Patt, D. I., and Patt, G. R. 1975. An Introduction to Modern Genetics. Addison-Wesley, Reading, Massachusetts, 371 p.Google Scholar
Prezbindowski, D. R., and Anstey, R. L. 1978. A Fourier-numerical study of a bryozoan fauna from the Threeforks Formation (Late Devonian) of Montana. Journal of Paleontology, 52:353369.Google Scholar
Rabbio, S. F. 1988. Ecological and taphonomic gradients in storm disturbed bryozoan communities of the Kope Formation (Cincinnatian Series, Upper Ordovician), Cincinnati Arch region. Unpubl. , Michigan State University, East Lansing, 219 p.Google Scholar
Ross, J. P. 1969. Champlainian (Ordovician) Ectoprocta (Bryozoa), New York State, Part II. Journal of Paleontology, 43:257284.Google Scholar
Smith-Gill, S. J. 1983. Developmental plasticity: developmental conversion versus phenotypic modulation. American Zoologist, 23:609623.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry. W. H. Freeman and Co., San Francisco, 859 p.Google Scholar
Stearns, S. C. 1976. Life history tactics: a review of the ideas. Quarterly Review of Biology, 51:347.Google Scholar
Tissot, B. N. 1988. Geographic variation and heterochrony in two species of cowries (Genus Cypraea). Evolution, 42:103117.Google ScholarPubMed
Tobin, R. C. 1982. A model for cyclic deposition in the Cincinnatian Series of southwestern Ohio, northern Kentucky and southeastern Indiana. Unpubl. Ph.D. dissertation, University of Cincinnati, Cincinnati, Ohio, 482 p.Google Scholar
Underwood, E. E. 1970. Quantitative Stereology. Addison–Wesley, Reading, Massachusetts, 274 p.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation. Harvard University Press, Cambridge, Massachusetts, 332 p.Google Scholar
Weibel, E. R. 1980. Stereological Methods. Academic Press, Orlando, Florida, 416 p.Google Scholar
Wilbur, H. M., and Collins, J. P. 1973. Ecological aspects of amphibian metamorphosis. Science, 182:13051314.Google Scholar
Williamson, P. G., and Foote, M. 1984. Global selection patterns in the prosobranch Melanoides tuberculata: implications for stasis and speciation. Geological Society of America, Abstracts with Programs, 16:695696.Google Scholar
Zaret, T. M. 1982. The stability/diversity controversy: a test of hypotheses. Ecology, 63:721731.Google Scholar