Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T16:21:31.756Z Has data issue: false hasContentIssue false

The evolutionary and biogeographic origins of the endemic Pectinidae (Mollusca: Bivalvia) of the Galápagos Islands

Published online by Cambridge University Press:  14 July 2015

Thomas R. Waller*
Affiliation:
Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia 20013-7012,

Abstract

New phylogenies of endemic Pectinidae of the Galápagos Islands allow their endemic status to be assessed relevant to the relict theory of insular endemism. Nodipecten magnificus and Leopecten isabelensis n. sp. are neoendemic species that evolved in the Pliocene from ancestors in the tropical eastern Pacific and more remote ancestors in the Tertiary Caribbean Province before closure of transisthmian seaways. Spathochlamys vestalis, an eastern Pacific species whose incipiently neoendemic Galápagos representatives have diverged only slightly from the mainland stock, is related to an extant, broadly distributed western Atlantic sister species, S. benedicti, which has an ancestry traceable back to the Miocene in the Tertiary Caribbean Province. Euvola galapagensis is a paleoendemic whose ancestral lineage is extinct on mainland coasts. Veprichlamys incantata is a paleoendemic with an exclusively Pacific history, with its probable immediate ancestor occurring in the Pliocene of Ecuador and its more remote Miocene ancestors in the cooler waters of the southeastern Pacific. The high frequency of endemism and the evidence that originations are Pliocene or later are consistent with the high rates of morphological evolution attained by the Pectinidae relative to many other bivalves.

New species described are L. isabelensis of the Galápagos Islands and L. cocosensis of Cocos Island. Leopecten is shown to be restricted to the Americas and to differ morphologically from Flabellipecten, an extinct Neogene European genus that is phylogenetically not closely related. Based on a new phylogeny, the genus Lyropecten is extinct, and living representatives of the Lyropecten-Nodipecten clade are all in the genus Nodipecten.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, D. P. 1966. Factors influencing the zoogeographic affinities of the Galápagos inshore marine fauna, p. 108122. In Bowman, R. I. (ed.), The Galápagos. University of California Press, Berkeley.Google Scholar
Abbott, R. T. 1974. American Seashells. The Marine Mollusca of the Atlantic and Pacific Coasts of North America (second edition). Van Nostrand Reinhold, New York, 663 p.Google Scholar
Adams, H. and Adams, A. 1853–1858. The Genera of Recent Mollusca, Arranged According to their Organization. J. Van Voorst, London, 2 (1854–1858):661 p.Google Scholar
Aguerrevere, P. I. 1925. Description of a new Pecten from Venezuela, S. A. Southern Academy of Sciences Bulletin, 24(2):5153.Google Scholar
Akers, W. H. 1972. Planktonic foraminifera and biostratigraphy of some Neogene formations, northern Florida and Atlantic Coastal Plain. Tulane Studies in Geology and Paleontology, 9:1139.Google Scholar
Anderson, F. M. 1905. A stratigraphic study in the Mount Diablo Range of California. California Academy of Sciences Proceedings, series 3, 2:155248.Google Scholar
Arnold, R. 1906. The Tertiary and Quaternary pectens of California. U.S. Geological Survey Professional Paper, 47, 264 p.Google Scholar
Banta, W. C. 1991. The Bryozoa of the Galápagos Islands, p. 371389. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Barnard, J. L. 1991. Amphipoda of the Galápagos Islands, p. 193206. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Bavay, A. 1904. Descriptions de quelques nouvelles espèces du genre Pecten et rectifications. Journal de Conchyliologie, 52(3):197206.Google Scholar
Berggren, W. A., Kent, D. V., and Van Couvering, J. A. 1985. The Neogene, pt. 2—Neogene geochronology and chronostratigraphy, p. 211–160. In Snelling, N. J. (ed.), The chronology of the geological record. Memoir No. 10. Published for The Geological Society by Blackwell Scientific Publications, Oxford.Google Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. III, and Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy, p. 129212. In Berggren, W. A., Kent, D. V., Aubry, M.-P., and Hardenbol, J. (eds.), Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Special Publication 54, Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma.Google Scholar
Bernard, F. R. 1983. Catalogue of the living Bivalvia of the eastern Pacific Ocean: Bering Strait to Cape Horn. Canadian Special Publication of Fisheries and Aquatic Sciences, 61:1102.Google Scholar
Bernard, F. R. 1989. Living Bivalvia of the Galapagos Islands. Annual Report, Western Society of Malacologists, 21 [for 1988]: 10.Google Scholar
Bernard, F. R., McKinnell, S. M., and Jamieson, G. S. 1991. Distribution and zoogeography of the Bivalvia of the eastern Pacific Ocean. Canadian Special Publication of Fisheries and Aquatic Sciences, 112:160.Google Scholar
Berry, S. S. 1963. Notices of new eastern Pacific Mollusca-V. Leaflets in Malacology [published by S. Stillman Berry, Redlands, California], 1(23):139146.Google Scholar
Beu, A. G. 1985. Pleistocene Chlamys patagonica delicatula (Bivalvia: Pectinidae) off southeastern Tasmania, and history of its species group in the Southern Ocean. Special Publication, South Australian Department of Mines and Energy, 5:111.Google Scholar
Beu, A. G. 1995. Pliocene limestones and their scallops. Institute of Geological and Nuclear Sciences Monograph 10. Institute of Geological and Nuclear Sciences, Ltd., Lower Hutt, New Zealand, 243 p.Google Scholar
Beurlen, K. 1944. Beiträge zur Stammesgeschichte der Muscheln. Sitzungsberichte der mathematisch-naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München, 1–2:133145.Google Scholar
Bianucci, G., Cantalamessa, G., Landini, W., Ragaini, L., and Valleri, G. 1997. Fossil mollusk association from Isabela Island (Galápagos, Ecuador). Bollettino della Società Paleontologica Italiana, 36:277281.Google Scholar
Blacut, G. and Kleinpell, R. M. 1969. A stratigraphic sequence of benthonic smaller Foraminifera from the La Boca Formation, Panama Canal Zone. Cushman Foundation Foraminiferal Research Contributions, 20(1):122.Google Scholar
Blake, J. A. 1991. The polychaete fauna of the Galápagos Islands, p. 7596. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.CrossRefGoogle Scholar
Bold, W. A. van den. 1972. Ostracoda of the La Boca Formation, Panama Canal Zone. Micropaleontology, 18(4):410442.Google Scholar
Broderip, W. J. 1833. Characters of new species of Mollusca and Conchifera, collected by Mr. Cuming. Zoological Society of London, Proceedings for 1833(1):48.Google Scholar
Brown, A. P., and Pilsbry, H. A. 1913. Fauna of the Gatun Formation, Isthmus of Panama, Pt. 2. Academy of Natural Sciences of Philadelphia Proceedings, 64:509519.Google Scholar
Brusca, R. C. 1987. Biogeographic relationships of Galápagos marine isopod crustaceans. Bulletin of Marine Science, 41:268281.Google Scholar
Campbell, L. D. 1993. Pliocene molluscs from the Yorktown and Chowan River Formations in Virginia. Virginia Division of Mineral Resources Publication, 127, vii + 259 p.Google Scholar
Campbell, M. R. 1993. Morphological variation and stratigraphic significance of Nodipecten collierensis and N. peedeensis from the Goose Creek Limestone of South Carolina [Abstract No. 19980]. Geologic Society of America Abstracts with Programs, Southeastern Section, Tallahassee, Florida, 1–2 April 1993, 25(4):67.Google Scholar
Cande, S. C. and Kent, D. V. 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research, 97:1391713951.Google Scholar
Coan, E. V., Scott, P. V., and Bernard, F. R. 2000. Bivalve Seashells of Western North America. Santa Barbara Museum of Natural History, Santa Barbara, California, viii + 764 p.Google Scholar
Coates, A. G. and Obando, J. A. 1996. The geological evolution of the Central American Isthmus, p. 2156. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. The University of Chicago Press, Chicago.Google Scholar
Colgan, M. W. 1991. El Niño and coral reef development in the Galápagos Islands. A study of the Urvina Bay uplift, p. 99120. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Collins, L. S., Coates, A. G., Berggren, W. A., Aubry, M.-P., and Zhang, J. 1996. The late Miocene Panama isthmian strait. Geology, 24:687690.Google Scholar
Conrad, T. A. 1849. Notes on shells, with descriptions of new genera and species. Academy of Natural Sciences of Philadelphia Journal, n. s., 1(3):210214.Google Scholar
Conrad, T. A. 1856. Descriptions of three new genera; twenty-three new species Middle Tertiary fossils from California, and one from Texas. Academy of Natural Sciences of Philadelphia Proceedings, 8:312316.Google Scholar
Conrad, T. A. 1862. Descriptions of new genera, subgenera, and species of Tertiary and Recent shells. Academy of Natural Sciences of Philadelphia Proceedings, 14:284291.Google Scholar
Cox, A. 1971. Paleomagnetism of San Cristóbal Island, Galápagos Islands. Earth and Planetary Science Letters, 11:152160.Google Scholar
Cox, A. 1983. Ages of the Galápagos Islands, p. 1113. In Bowman, R. I., Berson, M., and Leviton, A. E. (eds.), Patterns of Evolution in Galápagos Organisms. American Association for the Advancement of Science, Pacific Division, San Francisco.Google Scholar
Cox, A. and Dalrymple, G. B. 1966. Paleomagnetism and potassium-argon ages of some volcanic rocks from the Galápagos Islands. Nature, 209:776777.Google Scholar
Cronk, Q. C. B. 1992. Relict floras of Atlantic islands: patterns assessed. Biological Journal of the Linnean Society, 46:91103.Google Scholar
Cronk, Q. C. B. 1997. Islands: stability, diversity, conservation. Biodiversity and Conservation, 6:477493.Google Scholar
Dall, W. H. 1878. Fossil mollusks from the later Tertiaries of California. U.S. National Museum Proceedings, 1(8):1016.Google Scholar
Dall, W. H. 1898. Contributions to the Tertiary fauna of Florida with especial reference to the Silex beds of Tampa and the Pliocene beds of the Caloosahatchie River, including in many cases a complete revision of the generic groups treated of and their American Tertiary species. Transactions of the Wagner Free Institute of Science of Philadelphia, 3(4):571947.Google Scholar
Dall, W. H. 1908. Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U.S. Fish Commission steamer “Albatross,” during 1891, Lieut. Commander Z. L. Tanner, U.S.N., commanding, XXXVII and Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer “Albatross,” from October, 1904, to March, 1905, Lieut. Commander L. M. Garrett, U.S.N. commanding, XIV. The Mollusca and the Brachiopoda. Bulletin of the Museum of Comparative Zoölogy at Harvard College, 18(6):205487.Google Scholar
Dall, W. H. 1912. New species of fossil shells from Panama and Costa Rica. Smithsonian Miscellaneous Collections, 59(2):110.Google Scholar
Dall, W. H. and Ochsner, W. H. 1928. Tertiary and Pleistocene Mollusca from the Galápagos Islands. California Academy of Sciences Proceedings, series 4, 17(4):89139.Google Scholar
Dautzenberg, P. 1900. Croisières du Yacht Chazalie dans l'Atlantique: Mollusques. Famille Pectinidae. Mémoires de la Société zoologique de France, 13:224229.Google Scholar
del Río, C. J. 1992. Middle Miocene bivalves of the Puerto Madryn Formation, Valdes Peninsule, Chubut Province, Argentina (Nuculidae-Pectinidae), Pt. I. Palaeontographica, Palaeontologie A, 225:158.Google Scholar
del Río, C. J. 2004a. Revision of the large Neogene pectinids (Mollusca: Bivalvia) of eastern Santa Cruz and Chubut provinces (Patagonia: Argentina). Journal of Paleontology, 78:690699.Google Scholar
del Río, C. J. 2004b. Tertiary marine molluscan assemblages of eastern Patgonia (Argentina): A biostratigraphic analysis. Journal of Paleontology, 78:10971122.Google Scholar
del Río, C. J. In press. El Género Nodipecten Dall, 1898 (Bivalvia-Pectinidae) en el Neógeno de la Patagonia (Argentina). Ameghiniana.Google Scholar
Depéret, C. and Roman, F. 1902. Monographie des Pectinidés Néogènes de l'Europe et des régions voisines. Première partie: Genre Pecten. Mémoires de la Société Géologique de France. Paléontologie, 10(1):1104.Google Scholar
Depéret, C. and Roman, F. 1910. Monographie des Pectinidés Néogènes de l'Europe et des régions voisines. II. Genre Flabellipecten. Mémoires de la Société Géologique de France. Paléontologie, 18(2):105139.Google Scholar
Depéret, C. and Roman, F. 1912. Monographie des Pectinidés Néogènes de l'Europe et des régions voisines. II. Genre Flabellipecten (suite). Mémoires de la Société Géologique de France. Paléontologie, 19(1):139168.Google Scholar
Dijkstra, H. H. 1998. Notes on taxonomy and nomenclature of Pectinoidea (Mollusca: Bivalvia: Propeamussiidae, Pectinidae). 3. Nomina nova. Basteria, 62:245261.Google Scholar
Dijkstra, H. H. 2004. Two new species of Pectinoidea (Bivalvia, Propeamussiidae and Pectinidae) from the Philippines. Basteria, 67:127133.Google Scholar
Dijkstra, H. H. and Kastoro, W. W. 1997. Mollusca Bivalvia: Pectinoidea (Propeamussiidae and Pectinidae) from eastern Indonesia, p. 245285. In Crosnier, A. and Bouchet, P. (eds.), Résultats des Campagnes Musorstom, 16. Mémoires du Muséum national d'Histoire naturelle, Paris, 172.Google Scholar
Dijkstra, H. H. and Kilburn, R. N. 2001. The family Pectinidae in South Africa and Mozambique (Mollusca: Bivalvia: Pectinoidea). African Invertebrates, 42:263321.Google Scholar
Durham, J. W. 1950. Megascopic paleontology and marine stratigraphy, Pt. 2, 1940 E. W. Scripps cruise to the Gulf of California, Pt. II. Geological Society of America Memoir, 43, 216 p.Google Scholar
Durham, J. W. 1965. Geology of the Galápagos. Pacific Discovery, 18(5):36.Google Scholar
Durham, J. W. 1979. A fossil Haliotis from the Galápagos Islands. The Veliger, 21:369372.Google Scholar
Durham, J. W. and McBirney, A. R. 1975. Galápagos Islands, p. 285–190. In Fairbridge, R. W. (ed.), The Encyclopedia of World Regional Geology, Pt. I. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.Google Scholar
Emerson, W. K. and Old, W. E. Jr. 1965. New molluscan records for the Galápagos Islands. The Nautilus, 78:116120.Google Scholar
Finet, Y. 1991. The marine mollusks of the Galápagos Islands, p. 253280. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Finet, Y. 1994. The Marine Mollusks of the Galapagos Islands: A Documented Faunal List. Muséum d'Histoire naturelle, Geneva, Switzerland, 180 p.Google Scholar
Fleming, C. A. 1957. The genus Pecten in New Zealand. New Zealand Geological Survey, Paleontological Bulletin, 26:169.Google Scholar
Gabb, W. M. 1866. Paleontology of California, Cretaceous and Tertiary fossils. Geological Survey of California, 2:1299.Google Scholar
Gabb, W. M. 1873. On the topography and geology of Santo Domingo. American Philosophical Society Transactions, 15:49259.Google Scholar
Gardner, J. 1926. The molluscan fauna of the Alum Bluff Group of Florida, Pt. I, Prionodesmacea and Anomalodesmacea. U.S. Geological Survey Professional Paper, 142A:179.Google Scholar
Gardner, J. 1936. Additions to the molluscan fauna of the Alum Bluff group of Florida. Florida Geological Survey Bulletin, 14:782.Google Scholar
Gardner, J. 1945. Mollusca of the Tertiary formations of northeastern Mexico. Geological Society of America Memoir, 11, 332 p.Google Scholar
Garth, J. S. 1991. Taxonomy, distribution, and ecology of Galápagos Brachyura, p. 123145. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Gmelin, J. F. 1791. Caroli Linnaei systema naturae per tria naturae. Ed. 13, aucta, reformata, Vermes Testacea. Lipsiae, 1(6):30213910.Google Scholar
Gould, A. A. 1850. The shells from the United States Exploring Expedition. Boston Society of Natural History Proceedings, 3:275278, 309–312, 343–348.Google Scholar
Grant, U. S. IV and Stevenson, R. E. 1948. A new Pecten from the Upper Miocene of California. Journal of Paleontology, 22:804805.Google Scholar
Grau, G. 1959. Pectinidae of the Eastern Pacific. Allan Hancock Pacific Expeditions, 25:1308.Google Scholar
Grobben, C. 1894. Zur Kenntniss der Morphologie, der Verwandtschafts-verhältniss und des Systems der Mollusken. Sitzungsberichten der kaiserlichen Akademie der Wissenschaften in Wien. Mathematische-Naturwissenschaftliche Klasse, 103:6168.Google Scholar
Haman, D. and Kohl, B. 1986. Early Pliocene Montfortella (Foraminiferida) from Ecuador. Tulane Studies in Geology and Paleontology, 19:181183.Google Scholar
Hanna, G. D. and Hertlein, L. G. 1927. Expedition of the California Academy of Sciences to the Gulf of California in 1921. VI. Geology and paleontology. California Academy of Sciences Proceedings, series 4, 16(6):137157.Google Scholar
Hasson, P. F. and Fischer, A. G. 1986. Observations on the Neogene of northwestern Ecuador. Micropaleontology, 32(1):3242.Google Scholar
Hedley, C. 1902. Studies on Australian Mollusca, Pt. IV. Proceedings of the Linnean Society of New South Wales, 26:1625.Google Scholar
Heilprin, A. 1887. Exploration of the west coast of Florida and in the Okeechobee Wilderness. Wagner Free Institute of Science of Philadelphia, Transactions. (Reprinted in Palaeontographica America, 1964,4(33):371506)Google Scholar
Hertlein, L. G. 1925a. Pectens from the Tertiary of Lower California. California Academy of Sciences Proceedings, series 4, 19(1):135.Google Scholar
Hertlein, L. G. 1925b. New species of marine fossil Mollusca from western North America. Southern California Academy of Sciences Bulletin, 24(2):3946.Google Scholar
Hertlein, L. G. 1935. The Templeton Crocker Expedition of the California Academy of Sciences, 1932. No. 25. The Recent Pectinidae. California Academy of Sciences Proceedings, series 4, 21(25):301328.Google Scholar
Hertlein, L. G. 1969. Family Pectinidae Rafinesque, 1815, p. N348N373. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology. Vol. 1. Pt. N. Mollusca 6, Bivalvia. Geological Society of America and University of Kansas, Lawrence.Google Scholar
Hertlein, L. G. 1972. Description of a new species of Chlamys (Mollusca: Pelecypoda) from the Galápagos Islands. California Academy of Sciences Proceedings, series 4, 39(1):16.Google Scholar
Hertlein, L. G. and Grant, U. S. IV. 1972. The geology and paleontology of the marine Pliocene of San Diego, California (Paleontology: Pelecypoda). San Diego Society of Natural History, Memoir 2, (Pt. 2B):141409.Google Scholar
Hertlein, L. G. and Strong, A. M. 1955. Marine mollusks collected at the Galápagos Islands during the voyage of the Velero III, 1931–1932, p. 111144. In Allan Hancock Foundation, Essays in the Natural Sciences in honor of Captain Allan Hancock, on the occasion of his birthday, 26 July 1955. University of Southern California Press, Los Angeles.Google Scholar
Hey, R. 1977. Tectonic evolution of Cocos-Nazca spreading center. Geological Society of America Bulletin, 88:14041420.Google Scholar
Hickman, C. S. and Lipps, J. H. 1985. Geologic youth of Galápagos Islands confirmed by marine stratigraphy and paleontology. Science, 227:15781580.Google Scholar
Hickman, C. S. and Lipps, J. H. 1990. History of Galápagos geology: Oschner's [sic: Ochsner] misplaced Galápagos fossils (abstr.). Geological Society of America, Abstracts with Programs, 22(7):A120.Google Scholar
Hinds, R. B. 1845. The Zoology of the Voyage of H.M.S. Sulphur, Under the Command of Capt. Sir E. Belcher … Mollusca, Pt. 3, Smith and Elder, London, p. 4972.Google Scholar
Hodson, F., Hodson, H. K., and Harris, G. D. 1927. Some Venezuelan and Caribbean mollusks. Bulletins of American Paleontology, 13(49):1160.Google Scholar
Hunter, M. E. and Huddlestun, P. F. 1982. The biostratigraphy of the Torreya Formation of Florida, p. 211223. In Scott, T. M. and Upchurch, S. B. (eds.), Miocene of the southeastern United States. Proceedings of a symposium held 4–5 December 1980, Tallahassee, Florida. State of Florida, Department of Natural Resources, Bureau of Geology Special Publication No. 25.Google Scholar
Ihering, H. von. 1907. Les mollusques fossiles du Tertiare et du Crétacé Superieur de l'Argentine. Annales do Museo Nacional, Buenos Aires, 14:1611. (In 38 parts, November 1905 to September 1907)Google Scholar
Iredale, T. 1925. Mollusca from the continental shelf of eastern Australia. Records of the Australian Museum, 14:243270.Google Scholar
Iredale, T. 1929. Mollusca from the continental shelf of eastern Australia. Records of the Australian Museum, 17:157189.Google Scholar
Jablonski, D. and Lutz, R. A. 1980. Molluscan larval shell morphology: Ecological and paleontological applications, p. 323377. In Rhoads, D. C. and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum, New York.Google Scholar
Jackson, J. B. C. 1994. Perspectives: Community unity? Science, 264:14121413.Google Scholar
James, M. J. 1984. A new look at evolution in the Galápagos: Evidence from the late Cenozoic marine molluscan fauna. Biological Journal of the Linnean Society, 21:7795.Google Scholar
Jones, D. S., Mueller, P. A., Hodell, D. A., and Stanley, L. A. 1993. 87Sr/86Sr geochronology of Oligocene and Miocene marine strata in Florida, p. 1526. In Zullo, V. A., Harris, W. B., Scott, T. M., and Portell, R. W. (eds.), The Neogene of Florida and Adjacent Regions. Florida Geological Survey Special Publication 37, Tallahassee, Florida.Google Scholar
Jordan, E. K. and Hertlein, L. G. 1926. Contribution to the geology and paleontology of the Tertiary of Cedros Island and adjacent parts of Lower California. Expedition to the Revillagigedo Islands, Mexico, in 1925, VII. Proceedings of the California Academy of Sciences, series 4, 15(14):409464.Google Scholar
Kay, E. A. 1991. The marine mollusks of the Galápagos, determinants of insular marine faunas, p. 235252. In James, M. J. (ed.), Galápagos Marine Invertebrates: Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Keen, A. M. 1971. Sea Shells of Tropical West America. Marine Mollusks from Baja California to Peru (second edition). Stanford University Press, Stanford, California, 1,064 p.Google Scholar
Linnaeus, C. 1758. Systema Naturae per Regna Tria Naturae [editio decima, reformata 1 (Regnum animale)]. Salvii, Stockholm, 824 p.Google Scholar
Maluf, L. Y. 1991. Echinoderm fauna of the Galápagos Islands, p. 345367. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar
Mansfield, W. C. 1932. Pliocene fossils from limestone in southern Florida. U.S. Geological Survey Professional Paper, 170D:D43D56.Google Scholar
Masuda, K. 1971a. On some Patinopecten from North America. Transactions and Proceedings, Palaeontological Society of Japan, n. s., 83:166178.Google Scholar
Masuda, K. 1971b. Amussiopecten from North America and northern South America. Transactions and Proceedings, Palaeontological Society of Japan, n. s., 84:205224.Google Scholar
Monterosato, T. A. di. 1889. Coquilles marines Marocaines. Journal de Conchyliologie, 47:182193.Google Scholar
Montoya, M. 1983. Los moluscos marinos de la Isla del Coco, Costa Rica. I. Lista anotada de especies. Brenesia (Museo Nacional de Costa Rica), 21:325353.Google Scholar
Moore, E. J. 1984. Tertiary marine pelecypods of California and Baja California: Propeamussiidae and Pectinidae. U.S. Geological Survey Professional Paper, 1228B, iv + 112 p.Google Scholar
Müller, O. F. 1776. Zoologiae Danicae Prodromus, seu animalium Daniae et Norvegiae Indigenarum Characteres, Nomina, et Synonyma Imprimis Popularium. Copenhagen, xxxii + 281 p.Google Scholar
Olsson, A. A. 1922. The Miocene of northern Costa Rica. Bulletin of American Paleontology, 9(39):1309.Google Scholar
Olsson, A. A. 1961. Mollusks of the Tropical Eastern Pacific, Particularly from the Southern Half of the Panamic-Pacific Faunal Province (Panama to Peru). Panamic-Pacific Pelecypoda. Paleontological Research Institution, Ithaca, New York, 574 p.Google Scholar
Olsson, A. A. 1964. Neogene Mollusks from Northwestern Ecuador. Paleontological Research Institution, Ithaca, New York, 256 p.Google Scholar
Orbigny, A. d'. 1839. Mollusques, echinodermes, foraminiferes et polypiers recuellis aux Iles Canaries. In Webb, P. B. and Berthelot, S., 1836–1844, Histoire naturelle des Iles Canaries, Vol. 2. Pt. 2. 152 p.Google Scholar
Philippi, R. A. 1893. Descripción de Algunos Fósiles Terciarios de la República Argentina. Anales del Museo nacional de Chile (third edition), Mineralogía, Geología. Paleontología, 13 p.Google Scholar
Pilsbry, H. A., and Olsson, A. A. 1941. A Pliocene fauna from western Ecuador. Academy of Natural Sciences of Philadelphia Proceedings, 93:179.Google Scholar
Pitt, W. D. and Pitt, L. J. 1989. A new species of Trichotropis (Gastropoda: Mesogastropoda) from the Esmeraldas Beds, Onzole Formation, northwestern Ecuador. Tulane Studies in Geology and Paleontology, 22:131136.Google Scholar
Powell, A. W. B. 1933. Two new molluscs of the Pectinidae from 600 to 700 fathoms, four hundred miles west of New Plymouth. Transactions of the New Zealand Institute, 63:370372.Google Scholar
Powell, C. L. II 1986. Stratigraphy and bivalve molluscan paleontology of the Neogene Imperial Formation in Riverside County, California. Unpublished , , xi + 307 p.Google Scholar
Rafinesque, C. S. 1815. Analyse de la Nature ou Tableau de l'Univers du des Corps Organisés. C. S. Rafinesque, from the Press of Jean Barravecchia, Palermo, 225 p.Google Scholar
Reeve, L. A. 1852–53. Conchologia Iconica: or, Illustrations of the Shells of Molluscous Animals, Volume. VIII, Monograph of the genus Pecten. Lovell Reeve, London. Unnumbered pages on which 157 consecutively numbered species are described, interleaved with 35 pls.Google Scholar
Rochebrune, de, A. T. and Mabille, J. 1889. Mission Scientifique du Cap Horn, 1882–1883, Mollusques, 6 (Zoologie). Gauthier-Villars et Fils, Paris, 143 p.Google Scholar
Röding, P. F. 1798. Museum Boltenianum… Pars Secunda, Continens Conchylia Sive Testacea Univalvia, Bivalvia et Multivalvia. Hamburg, 199 p.Google Scholar
Roger, J. 1939. Le genre Chlamys dans les formations Néogènes de l'Europe. Conclusions générales sur la répartition géographique et stratigraphique des Pectinidés du Tertiare Récent. Mémoires de la Société Géologique de France. Nouvelle Série, 17(2–4):1294.Google Scholar
Rovereto, G. 1899. Rectifications de nomenclature. Revue critique paleozoologie, 3(2):90.Google Scholar
Sacco, F. 1897. I Molluschi dei terreni Terziarii del Piemonte e della Ligura, Pt. 24, (Pectinidae). Carlo Clausen, Torino, 74 p.Google Scholar
Smith, E. A. 1890. Report on the marine molluscan fauna of the island of St. Helena. Zoological Society of London Proceedings, Year 1890:247317.Google Scholar
Smith, E. A. 1891. Descriptions of new species of shells from the ‘Challenger’ Expedition. Zoological Society of London Proceedings, Year 1891:436445.Google Scholar
Smith, J. T. 1991a. Cenozoic giant pectinids from California and the Tertiary Caribbean Province: Lyropecten, “Macrochlamis,” Vertipecten, and Nodipecten species. U.S. Geological Survey Professional Paper, 1391, 155 p.Google Scholar
Smith, J. T. 1991b. Cenozoic marine mollusks and paleogeography of the Gulf of California, p. 637666. In Dauphin, J. P. and Simoneit, B. R. T. (eds.), The Gulf and Peninsular Province of the Californias. American Association of Petroleum Geologists Memoir, 47.Google Scholar
Smith, J. T. 1991c. The Salada Formation of Baja California Sur, México, p. 2332. In Carrillo-Chavez, A. and Alvarez-Arellano, A. (eds.), Primera Reunion Internacional sobre geologia de la Peninsula de Baja California, Memorias, Universidad Autónoma de Baja California Sur, México.Google Scholar
Smith, J. T. and Zinsmeister, W. J. 1982. Paleogeographic implications of a tropical eastern Pacific Nodipecten from the Tertiary of Patagonia [abstract]. Geological Society of America Abstracts with Programs, 14(4):235.Google Scholar
Sowerby, G. B. I. 1835. Characters of new species of Mollusca and Conchifera collected by Mr. Cuming. Zoological Society of London, Proceedings, volume. 3, for 1835:109110.Google Scholar
Sowerby, G. B. I. 1846. Appendix: Descriptions of Tertiary fossil shells from South America, p. 249264. In Darwin, C., Geological Observations on South America: Being the Third Part of the Geology of the Voyage of the Beagle, Under the Command of Capt. Fitzroy, R. N. During the years 1832 to 1836. Smith, Elder, London.Google Scholar
Sowerby, G. B. II. 1842. Monograph of the genus Pecten . Thesaurus Conchyliorum, 1:4582.Google Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation: The fission effect in Neogene Bivalvia. Paleobiology, 12:89110.Google Scholar
Stearns, R. E. C. 1893. Report on the mollusk fauna of the Galápagos Islands, with descriptions of new species. Proceedings of the U.S. National Museum, 16:353450.Google Scholar
Stewart, R. B. 1930. Gabb's California Cretaceous and Tertiary type lamellibranchs. Academy of Natural Sciences of Philadelphia, Special Publication No. 3, 314 p.Google Scholar
Stewart, R. B. 1946. Geology of Reef Ridge, Coalinga district, California, in Shorter Contributions to General Geology. U.S. Geological Survey Professional Paper, 205C:81115.Google Scholar
Toula, F. 1909. Eine jungtertiäre Fauna von Gatun am Panama-Kanal. Jahrbuch der kaiserlich königlichen geologischen Reichsanstalt, 58(4):673760.Google Scholar
Tucker-Rowland, H. I. 1938. New subgenus and genus of Tertiary pectinids. Journal of Conchology, 21(3):8082.Google Scholar
Tuomey, M. and Holmes, F. S. 1855–1856. Pleiocene Fossils of South Carolina. Russell and Jones, Charleston, South Carolina, 152 p.Google Scholar
Verrill, A. E. 1897. A study of the family Pectinidae, with a revision of the genera and subgenera. Transactions of the Connecticut Academy of Arts and Sciences, 10:4195.Google Scholar
von Teppner, W. 1922. Pars 15. Lamellibranchiata tertiaria. “Anisomyaria,” p. 67296. In Diener, C. (ed.), Fossilium Catalogus. I: Animalia. W. Junk, Berlin.Google Scholar
Walker, B. W. and Rosenblatt, R. H. 1961. The marine fishes of the Galápagos islands (abstract), p. 470471. In Abstracts of Symposium Papers, Tenth Pacific Science Congress of the Pacific Science Association, Honolulu, Hawaii, 1961.Google Scholar
Waller, T. R. 1972. The functional significance of some shell microstructures in the Pectinacea (Mollusca: Bivalvia). International Geological Congress, 24th Session, Section 7, Paleontology, Montreal, Canada: 4856.Google Scholar
Waller, T. R. 1973. The habits and habitats of some Bermudian marine mollusks. The Nautilus, 87:3152.Google Scholar
Waller, T. R. 1981. Functional morphology and development of the European oyster, Ostrea edulis Linné. Smithsonian Contributions to Zoology, 328, iii + 70 p.Google Scholar
Waller, T. R. 1984. The ctenolium of scallop shells: Functional morphology and evolution of a key family-level character in the Pectinacea (Mollusca: Bivalvia). Malacologia, 25(1):203219.Google Scholar
Waller, T. R. 1991. Evolutionary relationships among commercial scallops (Mollusca: Bivalvia: Pectinidae), p. 173. In Shumway, S. E. (ed.), Scallops: Biology, Ecology and Aquaculture. Elsevier, New York.Google Scholar
Waller, T. R. 1993. The Evolution of “Chlamys“ (Mollusca: Bivalvia: Pectinidae) in the tropical western Atlantic and eastern Pacific. American Malacological Bulletin, 10:195249.Google Scholar
Waller, T. R. 1995. The misidentified holotype of Argopecten circularis (Bivalvia: Pectinidae). The Veliger, 38:298303.Google Scholar
Waller, T. R. 2006. New phylogenies of the Pectinidae (Mollusca: Bivalvia): Reconciling morphological and molecular approaches, p. 144. In Shumway, S. E. and Parsons, J. G. (eds.), Developments in Aquaculture and Fisheries: Scallops: Biology, Ecology and Aquaculture (second editions). Elsevier Science, Amsterdam.Google Scholar
Waller, T. R. and Bongrain, M. 2006. Gigantopecten Rovereto, 1899 and Lissochlamys Sacco, 1897 (Mollusca, Bivalvia, Pectinidae): Proposed conservation [Case 3343]. Bulletin of Zoological Nomenclature. 63(3):155162.Google Scholar
Whittaker, J. E. 1988. Benthic Cenozoic Foraminifera from Ecuador. British Museum (Natural History), London, 194 p.Google Scholar
Woodring, W. P. 1966. The Panama land bridge as a sea barrier. American Philosophical Society Proceedings, 110(6):425433.Google Scholar
Woodring, W. P. 1982. Geology and Paleontology of Canal Zone and adjoining parts of Panama. Description of Tertiary Mollusks (Pelecypods: Propeamussiidae to Cuspidariidae; additions to families covered in P 306–E; additions to gastropods; cephalopods). U.S. Geological Survey Professional Paper, 306F:541759.Google Scholar
Zullo, V. A. 1991. Zoogeography of the shallow-water cirriped fauna of the Galápagos Islands and adjacent regions in the tropical eastern Pacific, p. 173192. In James, M. J. (ed.), Galápagos Marine Invertebrates. Taxonomy, Biogeography, and Evolution in Darwin's Islands. Plenum Press, New York.Google Scholar