Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T14:24:48.308Z Has data issue: false hasContentIssue false

Epibiont preservational and observational bias in fossil marine decapods

Published online by Cambridge University Press:  20 May 2016

David A. Waugh
Affiliation:
1Kent State University, Department of Geology, Kent, Ohio 44242, USA,
Rodney M. Feldmann
Affiliation:
1Kent State University, Department of Geology, Kent, Ohio 44242, USA,
Robert S. Crawford
Affiliation:
1Kent State University, Department of Geology, Kent, Ohio 44242, USA,
Sten Lennart Jakobsen
Affiliation:
2Geological Museum, University of Copenhagen ⊘ster Voldgade 5-7, DK-1350 Copenhagen K, Denmark,
Kyle B. Thomas
Affiliation:
1Kent State University, Department of Geology, Kent, Ohio 44242, USA,

Abstract

Epibionts on both living and fossil decapod crustaceans may serve as valuable proxies for paleoecological factors such as behavior and environment. Prevalence of epibionts, as observed primarily on the carapaces of fossil brachyurous decapod crustaceans, appears to be less than observed on living crabs, based upon observations in the literature, and from the study of a limited preserved biological and fossil collection. Among these factors, the three most important are that many extant epibionts do not possess skeletal structures and, therefore, are unlikely to be preserved; the epicuticle upon which epibionts attach to living brachyurans is lightly calcified and tends to be lost readily as a result of taphonomic processes; and the most common mode of preservation of fossil brachyurans is in concretions which tend to break open and leave a layer of cuticle on the counterpart, thus obscuring the potential surface of attachment of epibionts. Other factors such as the life habits of the crab, whether burrowing, burying, or remaining above the substrate; lifestyle, whether benthic or pelagic; and duration of the intermolt phase of the organism also play important roles in potential prevalence of epibionts. Careful preparation of part and counterpart remains of brachyurans as well as reference to the occurrence of epibionts in systematic studies will enhance knowledge of the host and epibiont.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abello, P., and Corbera, J. 1996. Epibiont bryozoans (Bryozoa, Ctenostomatida) of the crab Goneplax rhomboides (Brachyura, Goneplacidae) off the Ebro delta (western Mediterranean). Miscellania Zoologica (Barcelona), 19:4352.Google Scholar
Abello, P., Villanueva, R., and Gili, J. M. 1990. Epibiosis in deep-sea crab populations as indicator of biological and behavioral characteristics of the host. Journal of the Marine Biological Association of the United Kingdom, 70:687696.Google Scholar
Alexander, R. R., and Brett, C. E. 1990. Symposium on Paleozoic epibionts; introduction. Historical Biology, 4:151153.Google Scholar
Barnes, H., and Bagenal, T. B. 1951. Observations on Nephrops norvegicus (L.) and on an epizoic population of Balanus crenatus Brug. Journal of the Marine Biological Association of the United Kingdom, 30:369380.Google Scholar
Bauer, R. T. 1981. Grooming behavior and morphology in the decapod Crustacea. Journal of Crustacean Biology, 1:153173.Google Scholar
Bauer, R. T. 1989. Decapod crustacean grooming: functional morphology, adaptive value, and phylogenetic significance, p. 4973. In Felgenhauer, B. E., Watling, L., and Thistle, A. B. (eds.), Functional Morphology of Feeding and Grooming in Crustacea. A. A. Balkema, Rotterdam.Google Scholar
Becker, K. 1996. Epibionts on carapaces of some malacostracans from the Gulf of Thailand. Journal of Crustacean Biology, 16:92104.Google Scholar
Becker, K., and Wahl, M. 1996. Behavior patterns as natural antifouling mechanisms of tropical marine crabs. Journal of Experimental Marine Biology and Ecology, 203:245258.Google Scholar
Bishop, G. A. 1981. The lobster Linuparus preserved as an attachment scar on the oyster Exogyra costata, Ripley Formation (Late Cretaceous), Union County, Mississippi. Mississippi Geology, 2:25.Google Scholar
Bishop, G. A. 1983. Fossil decapod crustaceans from the Lower Cretaceous, Glen Rose Limestone of central Texas. San Diego Society of Natural History, 20:2755.Google Scholar
Bishop, G. A. 1986. Taphonomy of the North American decapods. Journal of Crustacean Biology, 6:326355.Google Scholar
Bishop, M. L., and Ropes, J. W. 1988. An indirect method for estimating longevity of the horseshoe crab (Limulus polyphemus) based on epifaunal slipper shells (Crepidula fornicata). Journal of Shellfish Research, 7:407412.Google Scholar
Bowers, R. L. 1968. Observations on the orientation and feeding behavior of barnacles associated with lobsters. Journal of Experimental Marine Biology and Ecology, 2:105112.Google Scholar
Brandt, D. 1996. Epizoans on Flexicalymene (Trilobita) and implications for trilobite paleoecology. Journal of Paleontology, 70:442449.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301.Google Scholar
Carlisle, A. I. 1952. Observations on the behaviour of Dromia vulgaris Milne Edwards with simple ascidians. Pubblicazioni della Stazione zoologica di Napoli, 24:142151.Google Scholar
Connell, J. H., and Keough, M. J. 1985. Disturbance and patch dynamics of subtidal marine animals on hard substrata, p. 125151. In Pickett, S. T. A. and White, P. S. (eds.), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, New York.Google Scholar
Cutress, C., Ross, D. M., and Sutton, L. 1969. The association of Calliactis tricolor with its pagurid, calappid, and majid partners in the Caribbean. Canadian Journal of Zoology, 48:371376.Google Scholar
Dell, R. K. 1969. A new Pliocene fossil crab of the genus (Trichopeltarion) from New Zealand. Records of the Canterbury Museum, 8:366371.Google Scholar
Eggleston, D. 1971. Synchronization between moulting in Calocaris macandreae [Decapoda] and reproduction in its epibiont Tricella koreni (Polyzoa Ectoprocta). Journal of the Marine Biological Association of the United Kingdom, 51:409410.CrossRefGoogle Scholar
Eights, J. 1852. Description of a new animal belonging to the Crustacea, discovered on the Antarctic Seas by the author, James Eights. Transactions of the Albany Institute, 2:331334.Google Scholar
Feldmann, R. M. 1998. Parasitic castration of the crab, Tumidocarcinus giganteus Glaessner, from the Miocene of New Zealand; coevolution within the Crustacea. Journal of Paleontology, 72:493498.Google Scholar
Feldmann, R. M., and Fordyce, R. E. 1996. A new cancrid crab from New Zealand. New Zealand Journal of Geology and Geophysics, 39:509513.Google Scholar
Feldmann, R. M., Villamil, T., and Kauffman, E. G. 1999. Decapod and stomatopod crustaceans from mass mortality lagerstatten: Turonian (Cretaceous) of Colombia. Journal of Paleontology, 73:91101.Google Scholar
Feldmann, R. M., Bice, K., Schweitzer-Hopkins, C. E., Salva, E. W., and Pickford, K. 1998. Decapod crustaceans from the Eocene Castle Hayne Limestone, North Carolina: paleooceanographic implications. The Paleontological Society Memoir, 48 [Journal of Paleontology, 72(1), supplement], 28 p.Google Scholar
Fernandez-Leborans, G., Cordoba, M. J. Herrero, and Del Arco, P. Gomez 1997. Distribution of ciliate epibionts on the portunid crab Liocarcinus depurator (Decapoda: Brachyura). Invertebrate Biology, 116:171177.Google Scholar
Forskål, P. 1775. Descriptiones Animalium, Avium, Amphibiorum, Piscium, Insectorum, Vermium. Hafniae, Copenhagen, 164 p.Google Scholar
Gili, J.-M., Abello, P., and Villanueva, R. 1993. Epibionts and intermoult duration in the crab Bathynectes piperitus. Marine Ecology Progress Series, 98:107113.Google Scholar
Glaessner, M. F. 1960. The fossil decapod Crustacea of New Zealand and the evolution of the order Decapoda. New Zealand Geological Survey Paleontological Bulletin, 31:179.Google Scholar
Glaessner, M. F. 1969. Decapoda, p. R400R533. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. R, Arthropoda 4(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Gordon, D. P., and Wear, R. G. 1999. A new ctenostome bryozoan ectosymbiotic with terminal-moult paddle crabs (Portunidae) in New Zealand. New Zealand Journal of Zoology, 26:373380.Google Scholar
H⊘eg, J. T., and Lützen, J. 1995. Life cycle and reproduction in Rhizocephala. Oceanography and Marine Biology, 33:427485.Google Scholar
Jakobsen, S. L., and Feldmann, R. M. 2004. Epibionts on Dromiopsis rugosa (Decapoda: Brachyura) from the late Middle Danian limestones at Fakse Quarry, Denmark: novel preparation techniques yield amazing results. Journal of Paleontology, 78(5):953960.Google Scholar
Jeffries, W. B., Voris, H. K., and Poovachiranon, S. 1992. Age of the mangrove crab Scylla serrata at colonization by stalked barnacles of the genus Octolasmis. Biological Bulletin, 182:188194.Google Scholar
Jeffries, W. B., Voris, H. K., and Yang, C. M. 1989a. A new mechanism of host colonization pedunculate barnacles of the genus Octolasmis on the mangrove crab Scylla serrata. Ophelia, 31:5158.Google Scholar
Jeffries, W. B., Voris, H. K., and Yang, C. M. 1989b. Observations on the incidence of the pedunculate barnacle, Octolasmis warwickii (Gray, 1825) on horseshoe crabs (Xiphosura) in the seas adjacent to Singapore. Raffles Bulletin of Zoology, 37:5862.Google Scholar
Key, M. M. Jr., and Barnes, D. K. A. 1999b. Bryozoan colonization of the marine isopod Glyptonotus antarcticus at Signy Island, Antarctica. Polar Biology, 21:4855.Google Scholar
Key, M. M. Jr., Volpe, J. W., Jeffries, W. B., and Voris, H. K. 1997. Barnacle fouling of the blue crab Callinectes sapidus at Beaufort, North Carolina. Journal of Crustacean Biology, 17:424439.Google Scholar
Key, M. M. Jr., Jeffries, W. B., Voris, H. K., and Yang, C. M. 1996a. Epizoic bryozoans and mobile ephemeral host substrata, p. 157165. In Gordon, D. P., Smith, A. M., and Grant-Mackie, J. A. (eds.), Bryozoans in Space and Time. National Institute of Water and Atmospheric Research Ltd., Wellington.Google Scholar
Key, M. M. Jr., Winston, J. E., Volpe, J. W., Jeffries, W. B., and Voris, H. K. 1999a. Bryozoan fouling of the blue crab Callinectes sapidus at Beaufort, North Carolina. Bulletin of Marine Science, 64:513533.Google Scholar
Key, M. M. Jr. 1996b. Epizoic bryozoans, horseshoe crabs, and other mobile benthic substrates. Bulletin of Marine Science, 58:368384.Google Scholar
Latreille, P. A. 1802–1803. Histoire naturelle, générale et particulière, des crustacés et des insectes. Vol. 3. F. Dufart, Paris, 468 p.Google Scholar
Lincoln, R., and Parsons-Hubbard, K. 2000. Disarticulation and dissolution of Callinectes across time and depth gradients in the Bahamas. Abstracts with Programs—Geological Society of America, 32:23.Google Scholar
Linnaeus, C. 1758. Systema naturae par regna tria naturae, secundum classes, ordines, genera, species cum chacteribus, differentis, synonymis, Locis, 1, 854 p.Google Scholar
Maldonado, M., and Uriz, M. J. 1992. Relationships between sponges and crabs: patterns of epibiosis on Inachus aguiarii (Decapoda: Majaidae). Marine Biology, 113:281286.Google Scholar
Manning, R. B., and Holthuis, L. B. 1981. West African brachyuran crabs (Crustacea: Decapoda). Smithsonian Contributions to Zoology, 306:1379.Google Scholar
Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M., and Schad, G. A. 1982. The use of ecological terms in parsitology. Journal of Parasitology, 68:131133.Google Scholar
McKinney, F. K., and Jackson, J. B. C. 1991. Bryozoan Evolution. University of Chicago Press, Chicago, xii, 238 p.Google Scholar
Mikulic, D. G. 1990. The arthropod fossil record: biologic and taphonomic controls on its composition, p. 123. In Mikulic, D. G. (ed.), Arthropod Paleobiology. Short Courses in Paleontology. Vol. 3. The Paleontological Society, Lawrence, Kansas.Google Scholar
Edwards, A. Milne, and Bouvier, E. L. 1894. Neolithodes, genre nouveau de la sous-famille des Lithodinés. Bulletin Société Zoologique de France, 19.Google Scholar
Mori, M., and Zunino, P. 1987. Aspects of the biology of Liocarcinus depurator (L.) in the Ligurian Sea. Investigacion Pesquera, 51(supl. 1):135145.Google Scholar
Müller, O. F. 1785. Entomostraca seu Insecta Testacea, quae in aquis Daniae et Norvegiae reperit, descripsit et iconibus illustravit. Lipsiae et Havniae, Copenhagen, 124 p.Google Scholar
Nagasawa, S. 1987. Exoskeletal scars caused by bacterial attachment to copepods. Journal of Plankton Research, 9:749753.Google Scholar
O'Brien, J. J., and Skinner, D. M. 1990. Overriding of the molt-inducing stimulus of multible limb autonomy in the mud crab Rhithropanopeus harrissi by parasitization with a rhizocephalan. Journal of Crustacean Biology, 10:440445.Google Scholar
Overstreet, R. M. 1979. Metazoan symbionts of the blue crab, p. 8187. In Perry, H. M. and Van Engel, W. A. (eds.), Proceedings Blue Crab Colloquium. Gulf Stream Marine Fisheries Commission, Publication 7.Google Scholar
Overstreet, R. M. 1983. Metazoan symbionts of crustaceans, p. 155250. In Bliss, D. E. (ed.), The Biology of Crustacea. Vol. 6. Academic Press, London.Google Scholar
Plotnick, R. E. 1986. Role of the calcified cuticle in arthropod taphonomy. Proceedings—North American Paleontological Convention, 4:A36.Google Scholar
Plotnick, R. E. 1990. Paleobiology of the arthopod cuticle, p. 177196. In Mikulic, D. G. (ed.), Arthropod Paleobiology. Vol. 3. The Paleontological Society, Lawrence, Kansas.Google Scholar
Poluzzi, A., and Sartori, R. 1975. Report on the carbonate mineralogy of Bryozoa. Documents des Laboratoires de Géologie, Lyon, Hors Série, p. 193210.Google Scholar
Rathbun, M. J. 1896. The genus Callinectes. Proceedings of the United States National Museum, 18:349375.Google Scholar
Remy, J. M. 1960. Études paléontologiques et géologiques sur les falaises de Fresco (Cote d'Ivoire). 2. Crustacés. Annals of the Faculty of Science of the University Dakar, 5:5565, 1 pl.Google Scholar
Robison, R. A. 1987. Superclass Chelicerata, p. 258264. In Boardmann, R. S., Cheetham, A. H., and Rowell, A. J. (eds.), Fossil Invertebrates. Blackwell Science, Cambridge, Massachusetts, 713 p.Google Scholar
Ross, D. M. 1983. Symbiotic relations, p. 163212. In Vernberg, S. J. and Vernberg, W. B. (eds.), The Biology of Crustacea. Vol. 7. Academic Press, New York.Google Scholar
Schäfer, W. 1972. Ecology and Palaeoecology of Marine Environments. University of Chicago Press, Chicago, 568 p.Google Scholar
Schram, F. R., and Mapes, R. H. 1984. Imocaris tuberculata, n. gen., n. sp. (Crustacea: Decapoda) from the upper Mississippian Imo Formation, Arkansas. Transactions of the San Diego Society of Natural History, 20:165168.Google Scholar
Schram, F. R., Feldmann, R. M., and Copeland, M. J. 1978. The Late Devonian Palaeopalaemonidae and the earliest decapod crustaceans. Journal of Paleontology, 52:13751387.Google Scholar
Schweitzer, C. E. 2000. Tertiary Xanthoidea (Crustacea: Decapoda: Brachyura) from the west coast of North America. Journal of Crustacean Biology, 20:715742.Google Scholar
Schweitzer, C. E., and Feldmann, R. M. 1999. Fossil decapod crustaceans from the late Oligocene to early Miocene Pysht Formation and late Eocene Quimper Sandstone, Olympic Peninsula, Washington. Annals of the Carnegie Museum, 68:215273.Google Scholar
Schweitzer, C. E., Scott-Smith, P. H., and Ng, P. K. L. 2002. New occurrences of fossil decapod crustaceans (Thalassinidea, Brachyura) from late Pleistocene deposits of Guam, United States Territory. Bulletin of the Mizunami Fossil Museum, 29:2549.Google Scholar
Shields, J. D. 1992. Parasites and symbionts of the crab Portunus pelagicus from Moreton Bay, eastern Australia. Journal of Crustacean Biology, 12:94100.Google Scholar
Smith, A. M., Nelson, C. S., and Spencer, H. G. 1998. Skeletal carbonate mineralogy of New Zealand bryozoans. Marine Geology, 151:2746.Google Scholar
Smith, A. M., and Nelson, C. S. 2003. Effects of early sea-floor processes on the taphonomy of temperate shelf skeletal carbonate deposits. Earth-Science Reviews, 63:131.Google Scholar
Stimpson, W. 1856. On some Californian Crustacea. Proceedings of the California Academy of Sciences, 1:96.Google Scholar
Takahashi, T., and Matsuura, S. 1994. Laboratory studies on molting and growth of the shore crab, Hemigrapsus sanguineus de Haan, parasitized by a rhizocephalan barnacle. Biological Bulletin, 186:300308.Google Scholar
Taylor, P. D., and Wilson, M. A. 2002. A new terminology for marine organisms inhabiting hard substrates. Palaios, 17:522525.Google Scholar
Taylor, P. D., and Wilson, M. A. 2003. Palaeoecology and evolution of marine hard substrate communities. Earth-Science Reviews, 62:1103.Google Scholar
Taylor, P. D., Bromley, R. G., and Wilson, M. A. 1999. A new ichnogenus for etchings made by cheilostome bryozoans into calcareous substrates. Palaeontology, 42(4):595604.Google Scholar
Thomson, J. M. 1951. Catch composition of the sand crab fishery in Moreton Bay. Australian Journal of Marine and Freshwater Research, 2:237244.Google Scholar
Tshudy, D. M., and Feldmann, R. M. 1988. Macruran decapods, and their epibionts, from the Lopez de Bertodano Formation (Upper Cretaceous), Seymour Island, Antarctica, p. 291301. In Feldmann, R. M. and Woodburne, M. O. (eds.), Memoir–Geological Society of America. Vol. 169. Geological Society of America, Boulder, Colorado.Google Scholar
Tshudy, D. M., Feldmann, R. M., and Ward, P. D. 1989. Cephalopods: biasing agents in the preservation of lobsters. Journal of Paleontology, 63:621626.Google Scholar
Vader, W., Johannessen, O. H., and Christiansen, B. O. 1981. A pelagic isopod, Syscenus infelix, over grown with hydroids. Fauna Norvegisa, ser. A, 2:4748.Google Scholar
Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology Progress Series, 58:175189.Google Scholar
Weng, H. T. 1987. The parasitic barnacle Sacculina granifera Boschma affecting the commercial sand crab Portunus pelagicus (L.), in populations from two different environments in Queensland Australia. Journal of Fish Diseases, 10:221228.Google Scholar
White, A. 1843. List of the annulose animals hitherto recorded as found in New Zealand, with descriptions of some new species, p. 265296. In Travels in New Zealand; with Contributions to the Geography, Geology, Botany and Natural History of that Country. Vol. 2. Murray, London.Google Scholar
Williams, R., and Moyse, J. 1988. Occurrence distribution and orientation of Poecilasma kaempferi Darwin (Cirripedia: Pedunculata) epizoic on Neolithodes grimaldi Milne-Edwards and Bouvier (Decapoda: Anomura) in the northeast Atlantic. Journal of Crustacean Biology, 8:177186.Google Scholar