Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T11:01:16.604Z Has data issue: false hasContentIssue false

Early mammalian radiations

Published online by Cambridge University Press:  20 May 2016

Richard L. Cifelli*
Affiliation:
Oklahoma Museum of Natural History, Norman 73072,

Extract

The seventy-fifth anniversary of the Journal of Paleontology presents a felicitous opportunity to review major changes in interpretation of mammalian phylogeny. Founding of the journal coincides with the nascence of the career of the most influential paleomammalogist of the past century, George Gaylord Simpson (1902-1984). It occurred at a time when now-archaic models for mammalian systematics and evolution, such as the aristogenesis of H. F. Osborn (1857-1935) and the typological concept of taxa, were prevalent (e.g., Simpson, 1945). These models were soon to give way to “new ways of going at things” (Laporte, 2000, p. 87); most significantly, the incorporation of quantitative methods and the evolutionary synthesis (Simpson, 1944). Subsequent decades witnessed the rise and/or sophistication of other applications and perspectives in fossil-based interpretation of mammalian systematics, including form-function analysis (e.g., Szalay, 1994) and, particularly, cladistic approaches (e.g., McKenna, 1975). Within these broad ideological frameworks, major paradigm shifts have resulted from new discoveries, conceptual changes, or (most commonly) a combination of both. Finally, mammalian systematics currently lie at the verge of a monumental paradigm shift, providing important direction for the future.

Type
Research Article
Copyright
Copyright © The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allin, E. F. 1986. The auditory apparatus of advanced mammal-like reptiles and early mammals, p. 283294. In Hotton, N., MacLean, P. D., Roth, J. J., and Roth, E. C. (eds.), The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington D. C.Google Scholar
Allin, E. F., and Hopson, J. A. 1992. Evolution of the auditory system in Synapsida (“mammal-like reptiles” and primitive mammals) as seen in the fossil record, p. 587614. In Webster, D. B., Fay, R. R., and Popper, A. N. (eds.), The Evolutionary Biology of Hearing. Springer-Verlag, Inc., New York.CrossRefGoogle Scholar
Amrine, H. M., and Springer, M. S. 1999. Maximum-likelihood analysis of the tethythere hypothesis based on a multigene data set and a comparison of different models of sequence evolution. Journal of Mammalian Evolution, 6:161176.CrossRefGoogle Scholar
Aplin, K. P., and Archer, M. 1987. Recent advances in marsupial systematics with a syncretic classification, p. xvlxxii. In Archer, M. (ed.), Possums and Opossums: Studies in Evolution. Surrey Beatty & Sons and the Royal Zoological Society of New South Wales, Sydney.Google Scholar
Archer, M. 1984. The Australian marsupial radiation, p. 633808. In Archer, M. and Clayton, G. (eds.), Vertebrate Zoogeography and Evolution in Australasia. Hesperian Press, Carlisle.Google Scholar
Archer, M., Flannery, T. F., Ritchie, A., and Molnar, R. 1985. First Mesozoic mammal from Australia—an Early Cretaceous monotreme. Nature, 318(6044):363366Google Scholar
Archer, M., Arena, R., Bassarova, M., Black, K., Brammal, J., Cooke, B., Creaser, P., Crosby, K., Gillespie, A., Godthelp, H., Gott, M., Hand, S. J., Kear, B., Krikmann, A., Mackness, B., Muir-Head, J., Musser, A., Myers, T., Pledge, N., Wang, Y.-Q., and Wroe, S. 1999. The evolutionary history and diversity of Australian mammals. Australian Mammalogy, 21:145.CrossRefGoogle Scholar
Archibald, J. D. 1982. A study of Mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. University of California Publications in Geological Sciences, 122:1286.Google Scholar
Archibald, J. D. 1996a. Dinosaur Extinction and the End of an Era: What the Fossils Say. Columbia University Press, New York, 237 p.Google Scholar
Archibald, J. D. 1996b. Fossil evidence for a Late Cretaceous origin of “hoofed” mammals. Science, 272:11501153.CrossRefGoogle Scholar
Archibald, J. D. 1998. Archaic ungulates (“Condylarthra”), p. 292331. In Janis, C. M., Scott, K. M., and Jacobs, L. L. (eds.), Evolution of Tertiary Mammals of North America. Volume 1. Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge University Press, Cambridge.Google Scholar
Averianov, A. O., and Kielan-Jaworowska, Z. 1999. Marsupials from the Late Cretaceous of Uzbekistan. Acta Palaeontologica Polonica, 44:7181.Google Scholar
Averianov, A. O., and Skutschas, P. P. 2000. Eutherian mammal from the Early Cretaceous of Russia and biostratigraphy of the Asian Early Cretaceous vertebrate assemblages. Lethaia, 33:330340.CrossRefGoogle Scholar
Benton, M. J. 2000. Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biological Reviews, 75:633648.Google Scholar
Bonaparte, J. F. 1990. New Late Cretaceous mammals from the Los Alamitos Formation, northern Patagonia. National Geographic Research, 6(1):6393Google Scholar
Burk, A., Westerman, M., Kao, D., Kavanagh, J. R., and Springer, M. S. 1999. An analysis of marsupial interordinal relationships based on 12S rRNA, tRNA Valine, 16S rRNA, and cytochrome b sequences. Journal of Mammalian Evolution, 6:317334.CrossRefGoogle Scholar
Butler, P. M. 1939. The teeth of the Jurassic mammals. Proceedings of the Zoological Society of London, 109:329356.Google Scholar
Butler, P. M. 1978. A new interpretation of the mammalian teeth of tribosphenic pattern from the Albian of Texas. Breviora, 446:127.Google Scholar
Butler, P. M. 1986. Docodont molars as tribosphenic analogues (Mammalia, Jurassic). Mémoires du Museum National d'Histoire Naturelle, Paris, 53:329340.Google Scholar
Butler, P. M. 1997. An alternative hypothesis on the origin of docodont molar teeth. Journal of Vertebrate Paleontology, 17(2):435439Google Scholar
Butler, P. M. 2000. Review of the early allotherian mammals. Acta Palaeontologica Polonica, 45:317342.Google Scholar
Butler, P. M., and Clemens, W. A. 2001. Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian post-canine dental formulae. Palaeontology, 44:120.CrossRefGoogle Scholar
Butler, P. M., and MacIntyre, G. T. 1994. Review of the British Haramiyidae (?Mammalia, Allotheria), their molar occlusion and relationships. Philosophical Transactions of the Royal Society of London, B 345:433458.Google Scholar
Cassiliano, M. L., and Clemens, W. A. 1979. Symmetrodonta, p. 150161. In Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. Jr. (eds.), Mesozoic Mammals—The First Two-thirds of Mammalian History. University of California Press, Berkeley.Google Scholar
Chow, M., and Rich, T. H. 1982. Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Australian Mammalogy, 5:127142.Google Scholar
Cifelli, R. L. 1990a. Cretaceous mammals of southern Utah. I. Marsupial mammals from the Kaiparowits Formation (Judithian). Journal of Vertebrate Paleontology, 10:295319.CrossRefGoogle Scholar
Cifelli, R. L. 1990b. Cretaceous mammals of southern Utah. II. Marsupials and marsupial-like mammals from the Wahweap Formation (early Campanian). Journal of Vertebrate Paleontology, 10:320331.CrossRefGoogle Scholar
Cifelli, R. L. 1990c. Cretaceous mammals of southern Utah. IV. Eutherian mammals from the Wahweap (Aquilan) and Kaiparowits (Judithian) formations. Journal of Vertebrate Paleontology, 10:346360.CrossRefGoogle Scholar
Cifelli, R. L. 1993a. Theria of metatherian-eutherian grade and the origin of marsupials, p. 205215. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny, Volume 2—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Volume 2. Springer-Verlag, Inc., New York.Google Scholar
Cifelli, R. L. 1993b. Early Cretaceous mammal from North America and the evolution of marsupial dental characters. Proceedings of the National Academy of Sciences USA, 90:94139416.CrossRefGoogle Scholar
Cifelli, R. L. 1999. Tribosphenic mammal from the North American Early Cretaceous. Nature, 401:363366.CrossRefGoogle ScholarPubMed
Cifelli, R. L., and Madsen, S. K. 1999. Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas, 21:167214.Google Scholar
Cifelli, R. L., and de Muizon, C. 1997. Dentition and jaw of Kokopellia juddi, a primitive marsupial or near marsupial from the medial Cretaceous of Utah. Journal of Mammalian Evolution, 4(4):241258Google Scholar
Clark, J. M., Montellano, M., Hopson, J. A., Hernandez, R., and Fastovsky, D. E. 1994. An Early or Middle Jurassic tetrapod assemblage from the La Boca Formation, northeastern Mexico, p. 295302. In Fraser, N. C. and Sues, H.-D. (eds.), In the Shadow of the Dinosaurs— Early Mesozoic Tetrapods. Cambridge University Press, Cambridge.Google Scholar
Clemens, W. A. 1966. Fossil mammals from the type Lance Formation Wyoming, Pt. II, Marsupialia. University of California Publications in Geological Sciences, 62:1122.Google Scholar
Clemens, W. A. In press. Evolution of the mammalian fauna across the Cretaceous-Tertiary boundary in northeastern Montana and other areas of the Western Interior. In Hartman, J. H., Johnson, K. R., and Nichols, D. J. (eds.), The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Continental Record of the End of the Cretaceous. Geological Society of America, Special Paper, Denver.Google Scholar
Clemens, W. A., and Lillegraven, J. A. 1986. New Late Cretaceous, North American advanced therian mammals that fit neither the marsupial nor eutherian molds. Contributions to Geology, University of Wyoming, Special Paper, 3:5585.Google Scholar
Clemens, W. A., and Mills, J. R. E. 1971. Review of Peramus tenuirostris. Bulletin of the British Museum (Natural History), Geology, 20(3):89113Google Scholar
Crompton, A. W. 1971. The origin of the tribosphenic molar, p. 6587. In Kermack, D. M. and Kermack, K. A. (eds.), Early Mammals. Volume 50, Zoological Journal of the Linnean Society, London.Google Scholar
Crompton, A. W. 1974. The dentition and relationships of the southern African Triassic mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bulletin of the British Museum (Natural History). Geology, 24:397437.Google Scholar
Crompton, A. W. 1995. Masticatory function in nonmammalian cynodonts and early mammals, p. 5575. In Thomason, J. J. (ed.), Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge.Google Scholar
Crompton, A. W., and Hylander, W. L. 1986. Changes in mandibular function following the acquisition of a dentary-squamosal joint, p. 263282. In Hotton, N., III, MacLean, P. D., Roth, J. J., and Roth, E. C. (eds.), The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington, D.C.Google Scholar
Crompton, A. W., and Jenkins, F. A. Jr. 1968. Molar occlusion in Late Triassic mammals. Biological Reviews, 43:427458.CrossRefGoogle ScholarPubMed
Crompton, A. W., and Jenkins, F. A. Jr. 1973. Mammals from reptiles: a review of mammalian origins. Annual Review of Earth and Planetary Sciences, 1:131155.CrossRefGoogle Scholar
Crompton, A. W., and Jenkins, F. A. Jr. 1979. Origin of mammals, p. 5973. In Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. Jr. (eds.), Mesozoic Mammals—The First Two-thirds of Mammalian History. University of California Press, Berkeley.Google Scholar
Crompton, A. W., and Luo, Z. 1993. Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium , p. 3044. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny, Volume 2—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Volume 1. Springer-Verlag, Inc., New York.Google Scholar
Crompton, A. W., and Sun, A.-L. 1985. Cranial structure and relationships of the Liassic mammal Sinoconodon . Zoological Journal of the Linnean Society, 85:99119.CrossRefGoogle Scholar
Dashzeveg, D. D. 1994. Two previously unknown eupantotheres (Mammalia, Eupantotheria). American Museum Novitates, 3107:111.Google Scholar
Datta, P. M., and Das, D. P. 1996. Discovery of the oldest fossil mammal from India. India Minerals, 50:217222.Google Scholar
Eaton, J. G. 1993. Therian mammals from the Cenomanian (Upper Cretaceous) Dakota Formation, southwestern Utah. Journal of Vertebrate Paleontology, 13(1):105124.CrossRefGoogle Scholar
Ensom, P. C., and Sigogneau-Russell, D. 1998. New dryolestoid mammals from the basal Cretaceous Purbeck Limestone group of southern England. Palaeontology, 41:3555.Google Scholar
Evans, S. E., and Milner, A. R. 1994. Middle Jurassic micro vertebrate assemblages from the British Isles, p. 303321. In Fraser, N. C. and Sues, H.-D. (eds.), In the Shadow of the Dinosaurs—Early Mesozoic Tetrapods. Cambridge University Press, Cambridge.Google Scholar
Fischer, M., and Tassy, P. 1993. The interrelation between Proboscidea, Sirenia, Hyracoidea, and Mesaxonia: the morphological evidence, p. 217234. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny: Placentals. Springer-Verlag, New York.CrossRefGoogle Scholar
Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W. F., and Wyss, A. E. 1999. A Middle Jurassic mammal from Madagascar. Nature, 401:5760.CrossRefGoogle Scholar
Fox, R. C. 1971. Marsupial mammals from the early Campanian Milk River Formation, Alberta, Canada, p. 145164. In Kermack, D. M. and Kermack, K. A. (eds.), Early Mammals. Volume 50, supplement 1. Zoological Journal of the Linnean Society, London.Google Scholar
Fox, R. C. 1979a. Mammals from the Upper Cretaceous Oldman Formation, Alberta. I. Alphadon Simpson (Marsupialia). Canadian Journal of Earth Sciences, 16(1):91102Google Scholar
Fox, R. C. 1979b. Mammals from the Upper Cretaceous Oldman Formation, Alberta. II. Pediomys Marsh (Marsupialia). Canadian Journal of Earth Sciences, 16(1):103113Google Scholar
Fox, R. C. 1980. Picopsis pattersoni, n. gen. and sp., an unusual therian from the Upper Cretaceous of Alberta, and the classification of primitive tribosphenic mammals. Canadian Journal of Earth Sciences, 17(11):14891498CrossRefGoogle Scholar
Fox, R. C. 1982. Evidence of new lineage of tribosphenic therians (Mammalia) from the Upper Cretaceous of Alberta, Canada. Geobios, Mémoire Spécial, 6:169175.CrossRefGoogle Scholar
Fox, R. C. 1984. Paranyctoides maleficus (new species), an early eutherian mammal from the Cretaceous of Alberta. Special Publication, Carnegie Museum of Natural History, 9:920.Google Scholar
Fox, R. C. 1985. Upper molar structure in the Late Cretaceous symmetrodont Symmetrodontoides Fox, and a classification of the Symmetrodonta. Journal of Paleontology, 59(1):2126.Google Scholar
Fox, R. C. 1989. The Wounded Knee local fauna and mammalian evolution near the Cretaceous-Tertiary boundary, Saskatchewan, Canada. Palaeontographica, Abt. A, 208:1159.Google Scholar
Gambaryan, P. P., and Kielan-Jaworowska, Z. 1995. Masticatory musculature of Asian taeniolabidid multituberculate mammals. Acta Palaeontologica Polonica, 40(1):45108Google Scholar
Gambaryan, P. P., and Kielan-Jaworowska, Z. 1997. Sprawling versus parasagittal stance in multituberculate mammals. Acta Palaeontologica Polonica, 42:1344.Google Scholar
Gaudin, T. J., Wible, J. R., Hopson, J. A., and Turnbull, W. D. 1996. Reexamination of the morphological evidence for the cohort Epitheria (Mammalia, Eutheria). Journal of Mammalian Evolution, 3:179.CrossRefGoogle Scholar
Godinot, M., and Prasad, G. V. R. 1994. Discovery of Cretaceous arboreal eutherians. Naturwissenschaften, 81:7981.CrossRefGoogle Scholar
Goin, F. J., Case, J. A., Woodburne, M. O., Vizcaíno, S. F., and Reguero, M. A. 1999. New discoveries of “opossum-like” marsupials from Antarctica (Seymour Island, medial Eocene). Journal of Mammalian Evolution, 6:335365.CrossRefGoogle Scholar
Gow, C. E. 1986. A new skull of Megazostrodon (Mammalia: Triconodonta) from the Elliot Formation (Lower Jurassic) of southern Africa. Palaeontologia Africana, 26:1323.Google Scholar
Gregory, W. K. 1910. The orders of mammals. Bulletin of the American Museum of Natural History, 27:1524.Google Scholar
Gregory, W. K. 1947. The monotremes and the palimpsest theory. Bulletin of the American Museum of Natural History, 88:152.Google Scholar
Gregory, W. K., and Simpson, G. G. 1926. Cretaceous mammal skulls from Mongolia. American Museum Novitates, 225:120.Google Scholar
Griffiths, M. 1978. The Biology of the Monotremes. Academic Press, New York, 367 p.Google Scholar
Hahn, G. 1969. Beiträge zur Fauna der Grube Guimarota nr. 3. Die Multituberculata. Palaeontographica Abteilung A, 133:1100.Google Scholar
Hahn, G. 1973. Neue zähne von Haramiyiden aus der Deutschen Ober-Trias und ihre beziehungen zu den Multituberculaten. Palaeontographica A, 142:115.Google Scholar
Hahn, G. 1977a. Das Coronoid der Paulchoffatiidae (Multituberculata; Ober-Jura). Paläontologische Zeitschrift, 51:246253.CrossRefGoogle Scholar
Hahn, G. 1977b. Neue Schädel-Reste von Multituberculaten (Mamm.) aus dem Malm Portugals. Geologica et Paleontologica, 11:161186.Google Scholar
Hahn, G. 1978. Neue Unterkiefer von Multituberculaten aus dem Malm Portugals. Geologica et Paleontologica, 12:177212.Google Scholar
Hahn, G. 1981. Zum Bau der Schädel-Basis der Paulchoffatiidae (Multituberculata, Ober-Jura). Senckenbergiana lethaea, 61:227245.Google Scholar
Hahn, G. 1985. Zum Bau des Infraorbital-Foramens bei den Paulchoffatiidae (Multituberculata, Ober-Jura). Berliner geowissenschaftlische Abhandlungen, A 60:527.Google Scholar
Hahn, G. 1987. Neue Beobachtungen zum Schädel- und Gebiss-Bau der Paulchoffatiidae (Multituberculata, Ober-Jura). Palaeovertebrata, 17:155196.Google Scholar
Hahn, G. 1988. Die Ohr-Region der Paulchoffatiidae (Multituberculata, Ober-Jura). Palaeovertebrata, 18:155185.Google Scholar
Hahn, G., and Hahn, R. 1983. Multituberculata, p. 1409. In Westphal, F. (ed.), Fossilium Catalogus, I: Animalia, Pars 127. Kugler Publications, Amsterdam.Google Scholar
Hahn, G., and Hahn, R. 1994. Nachweis des Septomaxillare bei Pseudobolodon krebsi n. sp. (Multituberculata) aus dem Malm Portugals. Berliner geowissenschaftlische Abhandlungen E, 13:929.Google Scholar
Hahn, G., Sigogneau-Russell, D., and Wouters, G. 1989. New data on Theroteinidae—their relations with Paulchoffatiidae and Haramiyidae. Geologica et Paleontologica, 23:205215.Google Scholar
Hopson, J. A. 1966. The origin of the mammalian middle ear. American Zoologist, 6:437450.CrossRefGoogle ScholarPubMed
Hopson, J. A. 1969. The origin and adaptive radiation of mammal-like reptiles and nontherian mammals. Annals of the New York Academy of Sciences, 167:199216.CrossRefGoogle Scholar
Hopson, J. A. 1994. Synapsid evolution and the radiation of non-eutherian mammals, p. 190219. In Spencer, R. S. (ed.), Major Features of Vertebrate Evolution. The Paleontological Society, Knoxville.Google Scholar
Hopson, J. A., and Crompton, A. W. 1969. Origin of mammals, p. 1572. In Dobzhansky, T., Hecht, M. K., and Steere, W. C. (eds.), Evolutionary Biology. Volume 3. Appleton-Century-Crofts, New York.Google Scholar
Horovitz, I. 2000. The tarsus of Ukhaatherium nessovi (Eutheria, Mammalia) from the Late Cretaceous of Mongolia: an appraisal of the evolution of the ankle in basal therians. Journal of Vertebrate Paleontology, 20:547560.CrossRefGoogle Scholar
Hu, Y., Wang, Y., Luo, Z., and Li, C. 1997. A new symmetrodont mammal from China and its implications for mammalian evolution. Nature, 390:137142.CrossRefGoogle ScholarPubMed
Hurum, J. H. 1994. The snout and orbit of Mongolian multituberculates studied by serial sections. Acta Palaeontologica Polonica, 39:181221.Google Scholar
Hurum, J. H. 1998a. The braincase of two Late Cretaceous Asian multituberculates studied by serial sections. Journal of Vertebrate Paleontology, 43:2152.Google Scholar
Hurum, J. H. 1998b. The inner ear of two Late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. Journal of Mammalian Evolution, 5:6594.CrossRefGoogle Scholar
Hurum, J. H., Presley, R., and Kielan-Jaworowska, Z. 1996. The middle ear in multituberculate mammals. Acta Palaeontologica Polonica, 41:253275.Google Scholar
Jenkins, F. A. Jr. 1969. Occlusion in Docodon (Mammalia, Docodonta). Postilla, 139:124.Google Scholar
Jenkins, F. A. Jr. 1990. Monotremes and the biology of Mesozoic mammals. Netherlands Journal of Zoology, 40:531.CrossRefGoogle Scholar
Jenkins, F. A. Jr., and Crompton, A. W. 1979. Triconodonta, p. 7490. In Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. (eds.), Mesozoic Mammals: The First Two-thirds of Mammalian History. University of California Press, Berkeley.Google Scholar
Jenkins, F. A. Jr., and Parrington, F. R. 1976. The postcranial skeletons of the Triassic mammals Eozostrodon, Megazostrodon and Erythrotherium. Philosophical Transactions of the Royal Society of London, B 273:387431.Google Scholar
Jenkins, F. A. Jr., and Schaff, C. R. 1988. The Early Cretaceous mammal Gobiconodon (Mammalia, Triconodonta) from the Cloverly Formation in Montana. Journal of Vertebrate Paleontology, 8(1):124.CrossRefGoogle Scholar
Jenkins, F. A. Jr., Crompton, A. W., and Downs, W. R. 1983. Mesozoic mammals from Arizona: new evidence on mammalian evolution. Science, 222:12331235.CrossRefGoogle ScholarPubMed
Jenkins, F. A. Jr., Gatesy, S. M., Shubin, N. H., and Amaral, W. W. 1997. Haramiyids and Triassic mammalian evolution. Nature, 385:715718.CrossRefGoogle ScholarPubMed
Ji, Q., Luo, Z., and Ji, S. 1999. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature, 398:326330.Google ScholarPubMed
Kemp, T. S. 1983. The relationships of mammals. Zoological Journal of the Linnean Society, 77:353384.CrossRefGoogle Scholar
Kermack, D. M., Kermack, K. A., and Mussett, F. 1968. The Welsh pantothere Kuehneotherium praecursoris. Journal of the Linnean Society (Zoology), 47(312):407423Google Scholar
Kermack, K. A. 1963. The cranial structure of the triconodonts. Philosophical Transactions of the Royal Society of London, 246:83103.Google Scholar
Kermack, K. A. 1967. The interrelations of early mammals. Journal of the Linnaean Society (Zoology), 47:241249.Google Scholar
Kermack, K. A., and Kielan-Jaworowska, Z. 1971. Therian and nontherian mammals, p. 103116. In Kermack, D. M. and Kermack, K. A. (eds.), Early Mammals. Volume 50, supplement 1. Zoological Journal of the Linnean Society, London.Google Scholar
Kermack, K. A., Lees, P. M., and Mussett, F. 1965. Aegialodon dawsoni, a new trituberculosectorial tooth from the lower Wealden. Proceedings of the Royal Society of London, B, 162:535554.Google ScholarPubMed
Kermack, K. A., and Mussett, F. 1958. The jaw articulation of the Docodonta and the classification of Mesozoic mammals. Proceedings of the Royal Society, London, 149:204215.Google ScholarPubMed
Kermack, K. A., Mussett, F., and Rigney, H. W. 1973. The lower jaw of Morganucodon . Journal of the Linnean Society (Zoology), 53:87175.CrossRefGoogle Scholar
Kermack, K. A., Mussett, F., and Rigney, H. W. 1981. The skull of Morganucodon . Zoological Journal of the Linnean Society, 53:87175.CrossRefGoogle Scholar
Kermack, K. A., Kermack, D. M., Lees, P. M., and Mills, J. R. E. 1998. New multituberculate-like teeth from the Middle Jurassic of England. Acta Paleontologica Polonica, 43(4):581606Google Scholar
Kielan-Jaworowska, Z. 1971. Skull structure and affinities of the Multituberculata. Palaeontologia Polonica, 25:541.Google Scholar
Kielan-Jaworowska, Z. 1982. Marsupial-placental dichotomy and paleogeography of Cretaceous Theria, p. 367383. In Gallitelli, E. M. (ed.), Palaeontology, Essential of Historical Geology. S.T.E.M. Mucci, Modena.Google Scholar
Kielan-Jaworowska, Z. 1986. Brain evolution in Mesozoic mammals. Contributions to Geology, University of Wyoming, Special Paper, 3:2134.Google Scholar
Kielan-Jaworowska, Z. 1992. Interrelationships of Mesozoic mammals. Historical Biology, 6:185202.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., and Dashzeveg, D. 1989. Eutherian mammals from the Early Cretaceous of Mongolia. Zoologica Scripta, 18(2):347355.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., and Dashzeveg, D. 1998. Early Cretaceous amphilestid (“triconodont”) mammals from Mongolia. Acta Palaeontologica Polonica, 43(3):413438Google Scholar
Kielan-Jaworowska, Z., and Gambaryan, P. P. 1994. Postcranial anatomy and habits of Asian multituberculate mammals. Fossils and Strata, 36:192.Google Scholar
Kielan-Jaworowska, Z., and Hurum, J. H. 1997. Djadochtatheria—a new suborder of multituberculate mammals. Acta Palaeontologica Polonica, 42:201242.Google Scholar
Kielan-Jaworowska, Z., and Hurum, J. H. 2001. Phylogeny and systematics of multituberculate mammals. Palaeontology, 44:389429.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., Crompton, A. W., and Jenkins, F. A. Jr. 1987. The origin of egg-laying mammals. Nature, 326:871873.CrossRefGoogle Scholar
Kielan-Jaworowska, Z., Eaton, J. G., and Bown, T. M. 1979. Theria of metatherian-eutherian grade, p. 182191. In Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. Jr. (eds.), Mesozoic Mammals—The First Two-thirds of Mammalian History. University of California Press, Berkeley.Google Scholar
Killian, J. K., Buckley, T. R., Stewart, N., Munday, B. L., and Jirtle, R. L. In press. Marsupials and eutherians reunited: Genetic evidence for the Theria hypothesis of mammalian evolution. Mammalian Genome.Google Scholar
Krebs, B. 1991. Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner Geowissenschaftliche Abhandlungen, 133:1110.Google Scholar
Kron, D. G. 1979. Docodonta, p. 9198. In Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. (eds.), Mesozoic Mammals: The First Two-thirds of Mammalian History. University of California Press, Berkeley.Google Scholar
Kühne, W. G. 1950. A symmetrodont tooth from the Rhaeto-Liass. Nature, 166:696697.CrossRefGoogle Scholar
Kühne, W. G. 1973. The systematic position of monotremes reconsidered. Zeitschrift für Morphologie der Tiere, 75:5964.CrossRefGoogle Scholar
Kumar, S., and Hedges, S. B. 1998. A molecular timescale for vertebrate evolution. Nature, 392:917920.CrossRefGoogle ScholarPubMed
Laporte, L. F. 2000. George Gaylord Simpson: Paleontologist and Evolutionist. Columbia University Press, New York, 332 p.CrossRefGoogle Scholar
Lee, M.-H., Schroff, R., Cooper, S. J. B., and Hope, R. 1999. Evolution and molecular characterization of a B-globin gene from the Australian echidna Tachyglossus aculeatus (Monotremata). Molecular Phylogenetics and Evolution, 12:205214.CrossRefGoogle Scholar
Lillegraven, J. A. 1969. Latest Cretaceous mammals of upper part of Edmonton Formation of Alberta, Canada, and review of marsupial-placental dichotomy in mammalian evolution. University of Kansas Paleontological Contributions, 50:1122.Google Scholar
Lillegraven, J. A. 1974. Biogeographical considerations of the marsupial-placental dichotomy. Annual Review of Ecology and Systematics, 5:263283.CrossRefGoogle Scholar
Lillegraven, J. A. 1975. Biological considerations of the marsupial-placental dichotomy. Evolution, 29:707722.CrossRefGoogle ScholarPubMed
Lillegraven, J. A., and Krusat, G. 1991. Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contributions to Geology, University of Wyoming, 28(2):39138.Google Scholar
Lillegraven, J. A., Kielan-Jaworowska, Z., and Clemens, W. A. 1979. Mesozoic Mammals—The First Two-thirds of Mammalian History. University of California Press, Berkeley, 311 p.Google Scholar
Lillegraven, J. A., Thompson, S. D., McNab, B. K., and Patton, J. L. 1987. The origin of eutherian mammals. Biological Journal of the Linnean Society, 32:281336.CrossRefGoogle Scholar
Linneus, C. 1766. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Volume 1. Regnum animale. Editio decima, reformata. Laurentii Salvii, Stockholm, 532 p.Google Scholar
Liu, F.-G. R., and Miyamoto, M. M. 1999. Phylogenetic assessment of molecular and morphological data for eutherian mammals. Systematic Biology, 48:5464.CrossRefGoogle ScholarPubMed
Liu, F.-G. R., Miyamoto, M. M., Freire, N. P., Ong, P. Q., Tennant, M. R., Young, T. S., and Gugel, K. F. 2001. Molecular and morphological supertrees for eutherian (placental) mammals. Science, 291:17861789.CrossRefGoogle ScholarPubMed
Lofgren, D. L. 1995. The Bug Creek problem and the Cretaceous-Tertiary transition at McGuire Creek, Montana. University of California Publications in Geological Sciences, 140:1185.Google Scholar
Lucas, S. G. 1992. Extinction and the definition of the class Mammalia. Systematic Biology, 41:370371.CrossRefGoogle Scholar
Lucas, S. G., and Luo, Z. 1993. Adelobasileus from the Upper Triassic of western Texas: the oldest mammal. Journal of Vertebrate Paleontology, 13:309334.CrossRefGoogle Scholar
Luckett, W. P., and Hong, N. 1998. Phylogenetic relationships between the orders Artiodactyla and Cetacea: a combined assessment of morphological and molecular evidence. Journal of Mammalian Evolution, 5:127182.CrossRefGoogle Scholar
Luo, Z. 1994. Sister-group relationships of mammals and transformations of diagnostic mammalian characters, p. 98128. In Fraser, N. C. and Sues, H.-D. (eds.), In the Shadow of the Dinosaurs—Early Mesozoic Tetrapods. Cambridge University Press, Cambridge.Google Scholar
Luo, Z., Cifelli, R. L., and Kielan-Jaworowska, Z. 2001. Dual origin of tribosphenic mammals. Nature, 409:5357.CrossRefGoogle ScholarPubMed
Luo, Z., Kielan-Jaworowska, Z., and Cifelli, R. L. In press. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica.Google Scholar
Madsen, O., Scally, M., Douady, C. J., Kao, D. J., Debry, R. W., Adkins, R., Amrine, H. M., Stanhope, M. J., De Jong, W. W., and Springer, M. S. 2001. Parallel adaptive radiations in two major clades of placental mammals. Nature, 409:610614.CrossRefGoogle ScholarPubMed
Maglio, V. J., and Cooke, H. B. S. 1978. Evolution of African Mammals. Harvard University Press, Cambridge, 641 p.CrossRefGoogle Scholar
Marshall, L. G. 1987. Systematics of Itaboraian (middle Paleocene) age “opossum-like” marsupials from the limestone quarry at São José de Itaboraí, Brazil, p. 91160. In Archer, M. (ed.), Possums and Opossums: Studies in Evolution. Surrey Beatty & Sons and the Royal Zoological Society of New South Wales, Sydney.Google Scholar
Marshall, L. G., and Kielan-Jaworowska, Z. 1992. Relationships of the dog-like marsupials, deltatheroidans and early tribosphenic mammals. Lethaia, 25:361374.CrossRefGoogle Scholar
Marshall, L. G., Case, J. A., and Woodburne, M. O. 1990. Phylogenetic relationships of the families of marsupials. Current Mammalogy, 2:433502.Google Scholar
Martin, T. 1997. Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). Journal of Mammalian Evolution, 4(1):118.CrossRefGoogle Scholar
Martin, T. 1999. Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 550:1119.Google Scholar
Martin, T. In press. New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. Journal of Vertebrate Paleontology, 21.Google Scholar
Matthew, W. D. 1937. Paleocene fauna of the San Juan Basin, New Mexico. Transactions of the American Philosophical Society, new series, 30:1510.CrossRefGoogle Scholar
McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia, p. 2146. In Luckett, W. P. and Szalay, F. S. (eds.), Phylogeny of the Primates. Plenum, New York.CrossRefGoogle Scholar
McKenna, M. C. 1987. Molecular and morphological analysis of high-level mammalian interrelationships, p. 5595. In Patterson, C. (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge.Google Scholar
McKenna, M. C., and Bell, S. K. 1997. Classification of Mammals Above the Species Level. Columbia University Press, New York, 631 p.Google Scholar
Miao, D. 1988. Skull morphology of Lambdopsalis bulla (Mammalia, Multituberculata). Contributions to Geology, University of Wyoming, Special Paper, 4:1104.Google Scholar
Miao, D. 1993. Cranial morphology and multituberculate relationships, p. 6374. In Szalay, F. S., Nocavek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny. Volume 1. Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York.Google Scholar
Mills, J. R. E. 1964. The dentitions of Peramus and Amphitherium . Proceedings of the Linnean Society of London, 175:117133.CrossRefGoogle Scholar
Muizon, C. de. 1995. Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia. Mémoires du Muséum National d'Histoire Naturelle 165, Paris, 164 p.Google Scholar
Muizon, C. de. 1998. Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Paleocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas, 20:19142.Google Scholar
Muizon, C. de, Cifelli, R. L., and Céspedes, R. 1997. The origin of dog-like marsupials and the early evolution of Gondwanian marsupials. Nature, 389:486489.Google Scholar
Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'brien, S. J. 2001. Molecular phylogenetics and the origins of placental mammals. Nature, 409:614618.CrossRefGoogle ScholarPubMed
Nessov, L. A. 1993. New Mesozoic mammals of middle Asia and Kazakhstan, and comments about evolution of theriofaunas of Cretaceous coastal plains of ancient Asia (In Russian). Trudy Zoologiceskogo Instituta, 249:105133.Google Scholar
Nessov, L. A., Archibald, J. D., and Kielan-Jaworowska, Z. 1998. Ungulate-like mammals from the Late Cretaceous of Uzbekistan and a phylogenetic analysis of Ungulatomorpha. Bulletin of the Carnegie Museum of Natural History, 34:4088.Google Scholar
Novacek, M. J. 1985. Cranial evidence for rodent affinities, p. 5981. In Luckett, W. P. and Hartenberger, J.-L. (eds.), Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis. Plenum Press, New York.CrossRefGoogle Scholar
Novacek, M. J. 1986. The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bulletin of the American Museum of Natural History, 183:1112.Google Scholar
Novacek, M. J. 1993. Reflections on higher mammalian phylogenetics. Journal of Mammalian Evolution, 1:330.CrossRefGoogle Scholar
Novacek, M. J., and Wyss, A. R. 1986. Higher-level relationships of the Recent eutherian orders: morphological evidence. Cladistics, 2:257287.CrossRefGoogle Scholar
Novacek, M. J., Wyss, A. R., and McKenna, M. C. 1988. The major groups of eutherian mammals, p. 3172. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Volume 2. Mammals. The Systematics Association, Special Volume No. 35B, Oxford University Press, Oxford.Google Scholar
Novacek, M. J., Rougier, G. W., Wible, J. R., McKenna, M. C., Dashzeveg, D. D., and Horovitz, I. 1997. Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia. Nature, 389:483486.CrossRefGoogle ScholarPubMed
O'Leary, M. A. 1999. Parsimony analysis of total evidence from extinct and extant taxa and the cetacean-artiodactyl question (Mammalia, Ungulata). Cladistics, 15:315330.CrossRefGoogle Scholar
O'Leary, M. A., and Geisler, J. H. 1999. The position of Cetacea within Mammalia: analysis of morphological data from extinct and extant taxa. Systematic Biology, 48:455490.CrossRefGoogle ScholarPubMed
Olson, E. C. 1944. Origin of mammals based upon cranial morphology of the therapsid suborders. Geological Society of America, Special Paper, 55:1136.CrossRefGoogle Scholar
Olson, E. C. 1959. The evolution of mammalian characters. Evolution, 13:344353.CrossRefGoogle Scholar
Osborn, H. F. 1893. Fossil mammals from the Upper Cretaceous beds. Bulletin of the American Museum of Natural History, 5:311330.Google Scholar
Palmer, A. R., and Geissman, J. 1999. 1999 Geological Time Scale. The Geological Society of America, Boulder, 1 p.Google Scholar
Parrington, F. R. 1971. On the Upper Triassic mammals. Philosophical Transactions of the Royal Society, B, 261:231272.Google Scholar
Patterson, B. 1956. Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana: Geology, 13(1):1105.Google Scholar
Patterson, B., and Olson, E. C. 1961. A triconodontid mammal from the Triassic of Yunnan, p. 129191. In Vandebroek, G. (ed.), International Colloquium on the Evolution of Lower and Non-specialized Mammals. Volume 1. Koninklijke Vlaamse Academie voor Wetenschappen, Letteren en Schone Kunsten van Belgie, Brussels.Google Scholar
Penny, D., and Hasegawa, M. 1997. The platypus put in its place. Nature, 387:549550.CrossRefGoogle ScholarPubMed
Penny, D., Hasegawa, M., Waddell, P. J., and Hendy, M. D. 1999. Mammalian evolution: Timing and implications from using log-determinant transform for proteins of differing amino acid composition. Systematic Biology, 48:7693.CrossRefGoogle Scholar
Prasad, G. V. R., and Godinot, M. 1994. Eutherian tarsals from the Late Cretaceous of India. Journal of Paleontology, 68:892902.CrossRefGoogle Scholar
Prothero, D. R. 1981. New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bulletin of the American Museum of Natural History, 167(5):277326Google Scholar
Prothero, D. R. 1993. Ungulate phylogeny: Molecular vs. morphological evidence, p. 173181. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny: Placentals. Springer-Verlag, New York.CrossRefGoogle Scholar
Prothero, D. R., Manning, E. M., and Fischer, M. 1988. The phylogeny of the ungulates, p. 201234. In Benton, M. J. (ed.), The Phylogeny and Classification of the Tetrapods. Volume 2. Mammals. Clarendon Press, Oxford.Google Scholar
Rasmussen, T. E., and Callison, G. 1981. A new species of triconodont mammal from the Upper Jurassic of Colorado. Journal of Paleontology, 55:628634.Google Scholar
Reig, O. A., Kirsch, J. A. W., and Marshall, L. G. 1987. Systematic relationships of the living and neocenozoic American “opossum-like” marsupials (Suborder Didelphimorphia), with comments on the classification of these and of the Cretaceous and Paleogene New World and European metatherians, p. 189. In Archer, M. (ed.), Possums and Opossums: Studies in Evolution. Surrey Beatty & Sons and the Royal Zoological Society of New South Wales, Sydney.Google Scholar
Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and Klaveren, N. v. 1997. A tribosphenic mammal from the Mesozoic of Australia. Science, 278:14381442.CrossRefGoogle Scholar
Rich, T. H., Vickers-Rich, P., Constantine, A., Flannery, T. F., Kool, L., and Klaveren, N. V. 1999. Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records of the Queen Victoria Museum, 106:135.Google Scholar
Ride, W. D. L. 1964. A review of Australian fossil marsupials. Journal of the Royal Society of Western Australia, 47:97131.Google Scholar
Rigby, J. K. Jr. 1980. Swain Quarry of the Fort Union Formation, middle Paleocene (Torrejonian), Carbon County, Wyoming: geologic setting and mammalian fauna. Evolutionary Monographs, 3:1179.Google Scholar
Romer, A. S. 1966. Vertebrate Paleontology (third edition). University of Chicago Press, Chicago, 468 p.Google Scholar
Rougier, G. W. 1993. Vincelestes neuquenianus Bonaparte (Mammalia, Theria) un Primitivo Mamífero del Cretácico Inferior de la Cuenca Neuquina. Ph.D. dissertation. Universidad Nacional de Buenos Aires, Buenos Aires, 720 p.Google Scholar
Rougier, G. W., Novacek, M. J., and Dashzeveg, D. D. 1997. A new multituberculate from the Late Cretaceous locality Ukhaa Tolgod, Mongolia. Considerations on multituberculate relationships. American Museum Novitates, 3193:126.Google Scholar
Rougier, G. W., Wible, J. R., and Hopson, J. A. 1996a. Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. American Museum Novitates, 3183:138.Google Scholar
Rougier, G. W., Wible, J. R., and Novacek, M. J. 1996b. Middle-ear ossicles of Kryptobataar dashzevegi (Mammalia, Multituberculata): implications for mammaliamorph relationships and evolution of the auditory apparatus. American Museum Novitates, 3187:143.Google Scholar
Rougier, G. W., Wible, J. R., and Novacek, M. J. 1998. Implications of Deltatheridium specimens for early marsupial history. Nature, 396:459463.CrossRefGoogle ScholarPubMed
Rowe, T. B. 1988. Definition, diagnosis, and origin of Mammalia. Journal of Vertebrate Paleontology, 8(3):241264CrossRefGoogle Scholar
Rowe, T. B. 1993. Phylogenetic systematics and the early history of mammals, p. 129145. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny, Volume 2—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Volume 1. Springer-Verlag, Inc., New York.Google Scholar
Rowe, T. B. 1996. Coevolution of the mammalian middle ear and neocortex. Science, 273:651654.CrossRefGoogle ScholarPubMed
Sargis, E. J. 2000. The functional morphology of the postcranium of Ptilocercus and tupaiines (Scandentia, Tupaiidae): implications for the relationships of primates and other archontan mammals. Ph.D. dissertation. City University of New York, New York, 317 p.Google Scholar
Sigogneau-Russell, D. 1983. Nouveaux taxons de Mammifères rhétiens. Acta Palaeontologica Polonica, 28:233249.Google Scholar
Sigogneau-Russell, D. 1989. Haramiyidae (Mammalia, Allotheria) en provenance du Trias supérieur de Lorraine (France). Palaeontographica. Abt. A, 206:137198.Google Scholar
Sigogneau-Russell, D. 1994. Further data and reflexions on the tribosphenid mammals (Tribotheria) from the Early Cretaceous of Morocco. Bulletin du Muséum National d'Histoire Naturelle, 16(2–4):291312.Google Scholar
Sigogneau-Russell, D. 1998. Discovery of a Late Jurassic Chinese mammal in the upper Bathonian of England. Comptes Rendus de l'Académie des Sciences, Paris, 327:571576.Google Scholar
Sigogneau-Russell, D. 1999. Réévaluation des Peramura (Mammalia, Theria) sur la base de nouveaux spécimens du Crétacé inférieur d'Angleterre et du Maroc. Geodiversitas, 21:93127.Google Scholar
Sigogneau-Russell, D., and Ensom, P. C. 1994. Découverte, dans le Groupe de Purbeck (Berriasian, Angleterre), de plus ancien témoinage de l'existence de mammifères tribosphéniques. Comptes Rendus de 1'Académie des Sciences, Paris, 319:833838.Google Scholar
Sigogneau-Russell, D., and Ensom, P. C. 1998. Thereuodon (Theria, Symmetrodonta) from the Lower Cretaceous of North Africa and Europe, and a brief review of symmetrodonts. Cretaceous Research, 19:126.CrossRefGoogle Scholar
Sigogneau-Russell, D., and Godefroit, P. 1997. A primitive docodont (Mammalia) from the Upper Triassic of France and the possible therian affinities of the order. Comptes Rendus de l'Académie des Sciences, 324:135140.Google Scholar
Sigogneau-Russell, D., and Hahn, G. 1995. Reassessment of the Late Triassic symmetrodont mammal Woutersia. Acta Palaeontologica Polonica, 40(3):245260Google Scholar
Sigogneau-Russell, D., Dashzeveg, D. D., and Russell, D. E. 1992. Further data on Prokennalestes (Mammalia, Eutheria inc. sed.) from the Early Cretaceous of Mongolia. Zoologica Scripta, 21:205209.CrossRefGoogle Scholar
Simmons, N. B. 1993. Phylogeny of Multituberculata, p. 146164. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny. Volume 1. Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York.Google Scholar
Simpson, G. G. 1925. Mesozoic Mammalia. 3. Preliminary comparison of Jurassic mammals except multituberculates. American Journal of Science, 10:559569.CrossRefGoogle Scholar
Simpson, G. G. 1928. A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London, 215 p.Google Scholar
Simpson, G. G. 1929a. American Mesozoic Mammalia. Memoirs of the Peabody Museum, 3(1):1235.Google Scholar
Simpson, G. G. 1929b. The dentition of Ornithorhynchus as evidence of its affinities. American Museum Novitates, 390:115.Google Scholar
Simpson, G. G. 1937a. Skull structure of the Multituberculata. Bulletin of the American Museum of Natural History, 73:727763.Google Scholar
Simpson, G. G. 1937b. The Fort Union of the Crazy Mountain Field, Montana and its mammalian faunas. United States National Museum, Bulletin, 169:1287.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and Mode of Evolution. Columbia University Press, New York, 237 p.Google Scholar
Simpson, G. G. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History, 85:1350.Google Scholar
Simpson, G. G. 1947. Haramiya, new name, replacing Microcleptes Simpson, 1928. Journal of Paleontology, 21:497.Google Scholar
Simpson, G. G. 1951. American Cretaceous insectivores. American Museum Novitates, 1541:119.Google Scholar
Simpson, G. G. 1959. Mesozoic mammals and the polyphyletic origin of mammals. Evolution, 13:405414.CrossRefGoogle Scholar
Simpson, G. G. 1960. Diagnosis of the classes Reptilia and Mammalia. Evolution, 14:388391.CrossRefGoogle Scholar
Sloan, R. E., and Van Valen, L. 1965. Cretaceous mammals from Montana. Science, 148:220227.CrossRefGoogle ScholarPubMed
Springer, M. S., Amrine, H. M., Burk, A., and Stanhope, M. J. 1999. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition. Systematic Biology, 48:6575.CrossRefGoogle ScholarPubMed
Stanhope, M. J., Madsen, O., Waddell, V. G., Cleven, G. C., de Jong, W. W., and Springer, M. S. 1998a. Highly congruent molecular support for a diverse superordinal clade of endemic African mammals. Molecular Phylogenetics and Evolution, 9:501508.CrossRefGoogle Scholar
Stanhope, M. J., Waddell, V. G., Madsen, O., de Jong, W. W., Hedges, S. B., Cleven, G. C., Kao, D., and Springer, M. S. 1998b. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proceedings of the National Academy of Sciences USA, 95:99679972.CrossRefGoogle Scholar
Storer, J. E. 1991. The mammals of the Gryde local fauna, Frenchman Formation (Maastrichtian: Lancian), Saskatchewan. Journal of Vertebrate Paleontology, 11:350369.CrossRefGoogle Scholar
Szalay, F. S. 1969. The Hapalodectinae and a phylogeny of the Mesonychidae (Mammalia, Condylarthra). American Museum Novitates, 2361:126.Google Scholar
Szalay, F. S. 1977. Phylogenetic relationships and a classification of eutherian Mammalia, p. 315374. In Hecht, M. K., Goody, O. C., and Hecht, B. M. (eds.), Major Patterns in Vertebrate Evolution. Plenum Press, New York.CrossRefGoogle Scholar
Szalay, F. S. 1982. A new appraisal of marsupial phylogeny and classification, p. 621640. In Archer, M. (ed.), Carnivorous Marsupials. Royal Zoological Society of New South Wales, Sydney.Google Scholar
Szalay, F. S. 1994. Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, Cambridge, 481 p.Google Scholar
Szalay, F. S., and Trofimov, B. A. 1996. The Mongolian Late Cretaceous Asiatherium, and the early phylogeny and paleobiogeography of Metatheria. Journal of Vertebrate Paleontology, 16:474509.CrossRefGoogle Scholar
Thewissen, J. G. M. 1994. Phylogenetic aspects of cetacean origins: a morphological perspective. Journal of Mammalian Evolution, 2:157184.CrossRefGoogle Scholar
Van Valen, L. 1960. Therapsids as mammals. Evolution, 14:304313.CrossRefGoogle Scholar
Van Valen, L. 1966. Deltatheridia, a new order of mammals. Bulletin of the American Museum of Natural History, 132:1126.Google Scholar
Waddell, P. J., Cao, Y., Hasegawa, M., and Mindell, D. P. 1999. Assessing the Cretaceous superordinal divergence times within birds and placental mammals by using whole mitochondrial protein sequences and an extended statistical framework. Systematic Biology, 48:119137.CrossRefGoogle Scholar
Watson, D. M. S. 1942. On Permian and Triassic tetrapods. Geological Magazine, 79:81116.CrossRefGoogle Scholar
Wible, J. R., and Hopson, J. A. 1993. Basicranial evidence for early mammal phylogeny, p. 4562. In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.), Mammal Phylogeny, Volume 1—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Volume 1. Springer-Verlag, Inc., New York.Google Scholar
Wible, J. R., and Rougier, G. W. 2000. The cranial anatomy of Kryptobaatar dashzevegi (Mammalia, Multituberculata), and its bearing on the evolution of mammalian characters. Bulletin of the American Museum of Natural History, 247:1124.2.0.CO;2>CrossRefGoogle Scholar
Wible, J. R., Rougier, G. W., Novacek, M. J., McKenna, M. C., and Dashzeveg, D. D. 1995. A mammalian petrosal from the Early Cretaceous of Mongolia: implications for the evolution of the ear region and mammaliamorph relationships. American Museum Novitates, 3149:119.Google Scholar
Woodburne, M. O., and Case, J. A. 1996. Dispersal, vicariance, and the Late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. Journal of Mammalian Evolution, 3:121161.CrossRefGoogle Scholar