Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-21T21:23:17.079Z Has data issue: false hasContentIssue false

Deep genetic divergence within a “living fossil” brachiopod Lingula anatina

Published online by Cambridge University Press:  20 May 2016

Shujuan Yang
Affiliation:
School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China,
Xulong Lai
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China,
Guilian Sheng
Affiliation:
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China,
Shuoshuo Wang
Affiliation:
Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel,

Abstract

The geographic population patterns of Lingula anatina across the Indo-West Pacific region are analyzed based on mitochondrial COI and nuclear EF-1α gene sequences. Compared with the remarkable morphological stasis, genetic evidence of extant Lingula species displays deep genetic divergence. Three distinct COI lineages were detected for L. anatina, one of which is from Qinhuangdao (Hebei, China, Bohai Sea), the other two from Beihai (Guangxi, China, Gulf of Tonkin). Individuals from South Japan have a very close relationship with one of the two COI lineages found in Beihai, which is also supported by EF-1α results, suggesting a relatively recent migration between South China Sea and East China Sea. Genetic distances between the three lineages of L. anatina are rather high (8.9%, 8.6%, and 2.7%), and those between L. anatina and L. adamsi is much higher (44.5%), compared to other marine invertebrates. Both tectonic evolution and the repeated Quaternary glaciations have contributed to the complex phylogeographic pattern found in these recent Lingula anatina populations.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J. C., Nelson, W. S., and Sugita, H. 1994. A speciational history of ‘living fossils': Molecular evolutionary patterns in horseshoe crabs. Evolution, 48:19862001.Google Scholar
Avise, J. C. 2004. Molecular Markers, Natural History and Evolution. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
Bandelt, H. J., Forster, P., Sykes, B. C., and Richards, M. B. 1995. Mitochondrial portraits of human populations using median networks. Genetics, 141:743753.CrossRefGoogle ScholarPubMed
Barnes, G. L. 2003. Origins of the Japanese Islands: The new “Big Picture”. Japan Review, 15:350.Google Scholar
Bermingham, E. and Lessios, H. A. 1993. Rate variation of protein and mitochondrial DNA evolution as revealed by sea urchins separated by the Isthmus of Panama. Proceedings of the National Academy of Sciences of the U.S.A., 90:27342738.Google Scholar
Biernat, G. and Emig, C. C. 1993. Anatomical distinctions of the Mesozoic lingulide brachiopods. Acta Palaeontologica Polonica, 38:120.Google Scholar
Bloom, A. L. and Park, Y. A. 1985. Holocene sea-level history and tectonic movement, Republic of Korea. Quaternary Research, 24:7784.Google Scholar
Brower, A. V. Z. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the U.S.A., 91:64916495.Google Scholar
Bruguière, J. G. 1797. Vers, coquilles, mollusques et polypiers. Tableau encyclopédique et méthodique des trois règnes de la nature, vol. 2. Agasse, Paris, 96314. (In French)Google Scholar
Dall, W. H. 1870. A revision of the terebratulidae and lingulidae. American Journal of Conchology, 6:88168.Google Scholar
Emig, C. C. 1997. Ecology of inarticulated brachiopods, p. 473495. InKaesler, R. L.(ed.), Treatise on Invertebrate Paleontology. Part H. Brachiopoda. The Geological Society of America and University of Kansas, Boulder, Colorado, and Lawrence, Kansas.Google Scholar
Emig, C. C. 2003. Proof that Lingula (Brachiopoda) is not a living fossil, and emended diagnoses of the family Lingulidae. Carnets de Gelogie/Notebooks on Geology, Letter 1:18.Google Scholar
Endo, K., Noguchi, Y., Ueshima, R., and Jacobs, H. T. 2005. Novel repetitive structures, deviant protein-encoding sequences and unidentified ORFs in the mitochondrial genome of the brachiopod Lingula anatina. Molecular Evolution, 61:3653.Google Scholar
Endo, K., Ozawa, T., and Kojima, S. 2001. Nuclear and mitochondrial gene sequence reveal unexpected genetic heterogeneity among northern Pacific populations of the brachiopod Lingula anatina. Marine Biology, 139:105112.Google Scholar
Feng, Y., Li, Q., Kong, L., and Zheng, X. 2011. DNA barcoding and phylogenetic analysis of Pectinidae (Mollusca: Bivalvia) based on mitochondrial COI and 16S rRNA genes. Molecular Ecology Report, 38:291299.Google Scholar
Hammond, L. S. and Poiner, I. R. 1984. Genetic structure of three populations of the ‘living fossil' brachiopod Lingula from Queensland, Australia. Lethaia, 17:139142.Google Scholar
Han, Z., Yanagimoto, T., Zhang, Y., and Gao, T. 2012. Phylogeography study of Ammodytes personatus in Northwestern Pacific: Pleistocene isolation, temperature and current conducted secondary contact. PloS One, 7:e37425.Google Scholar
Hay, J. M., Subramanian, S., Millar, C. D., Mohandesanl, E., and Lambert, D. M. 2008. Rapid molecular evolution in a living fossil. Trends in Genetics, 24:106109.Google Scholar
Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., and Hallwachs, W. 2004a. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the U.S.A., 101:1481214817.Google Scholar
Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., and Francis, C. M. 2004b. Identification of bird through DNA barcodes. PLoS Biology, 2:16571663.Google Scholar
Hebert, P. D. N., Ratnasingham, S., and Waard, J. R. D. 2003. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Series B, 270:S96S99.Google Scholar
Hickerson, M. J., Meyer, C. P., and Moritz, C. 2006. DNA barcoding will often fail to discover new animal species over broad parameter space. Systematic Biology, 55:729739.Google Scholar
Holder, M.T., Erdmann, M. V., Wilcox, T. P., Caldwell, R. L., and Hillis, D. M. 1999. Two living species of coelacanths? Proceedings of the National Academy of Sciences of the U.S.A., 96:1261612620.Google Scholar
Holmes, B. H., Steinke, D., and Ward, R. D. 2009. Identification of shark and ray fins using DNA barcoding. Fisheries Research, 95:280288.Google Scholar
Knowlton, N. and Weigt, L.A. 1998. New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society of London, Series B, 265:22572263.Google Scholar
Lessios, H. A., Kane, J., and Robertson, D. R. 2003. Phylogeography of the pantropical sea urchin Tripneustes: Contrasting patterns of population structure between oceans. Evolution, 57:20262036.Google Scholar
Lessios, H. A., Kessing, B. D., Robertson, D. R., and Paulay, G. 1999. Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution, 53:807817.Google Scholar
Liu, J. X., Gao, T. X., Wu, S. F., and Zhang, Y. P. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus (Temminck and Schlegel, 1845). Molecular Ecology, 16:275288.Google Scholar
Mikkelsen, N. T., Schander, C., and Willassen, E. 2007. Local scale DNA barcoding of bivalves (Mollusca): A case study. Zoologica Scripta, 36:455463.Google Scholar
Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press.Google Scholar
Page, T. J. and Hughes, J. M. 2010. Comparing the performance of multiple mitochondrial genes in the analysis of Australian freshwater fishes. Journal of Fish Biology, 77:2093–122.Google Scholar
Peng, Y., Shi, G. R., Gao, Y., He, W., and Shen, S. 2007. How and why did the Lingulidae (Brachiopoda) not only survive the end-Permian mass extinction but also thrive in its aftermath? Palaeogeography, Palaeoclimatology, Palaeoecology, 252:118131.Google Scholar
Pirazzoli, P. 1991. World Atlas of Holocene Sea-Level Change. Elsevier Oceanography Series.Google Scholar
Reyment, R. A., Endo, K., and Tsujimoto, Y. 2007. A note on heterogeneity in northern Pacific populations of the brachiopod species Lingula anatina Lamarck. Earth Evolution Sciences, 1:3336.Google Scholar
Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X., and Rozas, R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19:24962497.Google Scholar
Sato, S., Endo, K., and Yamashita, H. 2004. Morphological and genetic comparisons of Lingula adamsi Dall, 1873 from South Korea and Japan. Japanese Journal of Benthology, 59:1419. (In Japanese)Google Scholar
Schneider, S., Roessli, D., and Excoffier, L. 2000. ARLEQUIN, version 2.000: A software for population genetic data analysis. Geneva, University of Geneva.Google Scholar
Schwaninger, H. R. 2008. Global mitochondrial DNA phylogeography and biogeographic history of the antitropically and longitudinally disjunct marine bryozoan Membranipora membranacea L. (Cheilostomata): Another cryptic marine sibling species complex? Molecular Phylogenetics and Evolution, 49:893908.Google Scholar
Smirnova, T. N. and Ushatinskaya, G. T. 2001. New lingulids (Brachiopoda) from the Lower Cretaceous of European Russia, with notes in the microstructure of their shells. Paleontologicheskii Zhurnal, 4:5159. (In Russian)Google Scholar
Sperling, E. A., Pisani, D., and Peterson, K. J. 2011. Molecular paleobiological insights into the origin of the Brachiopoda. Evolution and Development, 13:290303.Google Scholar
Stolk, S. P., Holmer, L. E., and Caron, J. B. 2009. First record of the brachiopod Lingulella waptaensis with pedicle from the middle Cambrian Burgess Shale. Acta Zoologica, 91:150162.CrossRefGoogle Scholar
Sun, Y., Kong, L., and Zheng, X. 2012. DNA barcoding of Caenogastropoda along the coast of China based on the COI gene. Molecular Ecology Resources, 12:209218.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology Evolution, 28:27312739.Google Scholar
Vanschoenwinkel, B., Pinceel, T., Vanhove, M. P. M., Denis, C., Jocque, M., Timms, B. V., and Brendonck, L. 2012. Toward a global phylogeny of the ‘living fossil' Crustacean order of the Notostraca. Plos One, 7:e34998.Google Scholar
Wares, J. P. 2001. Patterns of speciation inferred from mitochondrial DNA in North American Chthamalus (Cirripedia: Balanomorpha: Chthamaloidea). Molecular Phylogenetics and Evolution, 18:104116.CrossRefGoogle ScholarPubMed
Yegorov, A. N. and Popov, L. E. 1990. A new Lower Permian lingulid from the Siberian Platform. Paleontologicheskii Zhurnal, 4:111115. (In Russian)Google Scholar
Yi, S., Yi, S., Batten, D. J., Yun, H., and Park, S. J. 2003. Cretaceous and Cenozoic non-marine deposits of the Northern South Yellow Sea Basin, offshore western Korea: palynostratigraphy and palaeoenvironments. Palaeogeography, Palaeoclimatology, Palaeoecology, 191:1544.Google Scholar
Zezina, O. N. 2010. Check-list of Holocene brachiopods annotated with geographical ranges of species. Paleontological Journal, 44:11761199.Google Scholar
Zhang, Z. F., Robson, S. P., Emig, C. C., and Shu, D. G. 2008. Early Cambrian radiation of brachiopods: A perspective from South China. Gondwana Research, 14:241254.Google Scholar