Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T04:07:45.922Z Has data issue: false hasContentIssue false

Continental insect borings in dinosaur bone: Examples from the late Cretaceous of Madagascar and Utah

Published online by Cambridge University Press:  14 July 2015

Raymond R. Rogers
Affiliation:
Geology Department, Macalester College, St. Paul, Minnesota
Brady Z. Foreman
Affiliation:
Geology Department, Macalester College, St. Paul, Minnesota

Abstract

Two new insect-related ichnogenera are reported in fossil dinosaur bones from Upper Cretaceous continental strata in Madagascar and Utah. Cubiculum ornatus n. igen. and isp. is described from numerous fossil bones in the Upper Cretaceous Maevarano Formation of northwestern Madagascar, and consists of hollow, ovoid chambers with concave flanks excavated into both spongy and compact bone. Traces similar in morphology to Cubiculum ornatus have been reported elsewhere in North America, Asia, Europe, and Africa in bones ranging in age from Jurassic to Pleistocene, and have been interpreted as pupal chambers constructed by carrion beetle larvae. Osteocallis mandibulus n. igen. and isp. is described in dinosaur bones from continental deposits of the Upper Cretaceous Maevarano Formation of Madagascar and the Upper Cretaceous Kaiparowits Formation of southern Utah. O. mandibulus consists of shallow, meandering surface trails, composed of numerous arcuate grooves, bored into compact (cortical) bone surfaces, and is tentatively interpreted as a feeding trace. Based on similar patterns of bioglyph preserved in both Cubiculum ornatus and Osteocallis mandibulus, the tracemaker is interpreted to be the same or similar for both borings. Given the recurrent association with animal remains, the tracemaker is furthermore presumed to be a necrophagous or osteophagous insect that used bone as a substrate for both reproduction (C. ornatus) and feeding (O. mandibulus).

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Stueben, D., Berner, Z., Ramanivosoa, B., and Randriamanantenaso, A. 2002. Age and paleoenvironment of the Maastrichtian–Paleocene of the Mahajanga Basin, Madagascar: A multidisciplinary approach. Marine Micropaleontology, 47:1770.CrossRefGoogle Scholar
Behrensmeyer, A. K. 1978. Taphonomic and ecologic information from bone weathering. Paleobiology, 4:150162.CrossRefGoogle Scholar
Behrensmeyer, A. K., Gordon, K. D., and Yanagi, G. T. 1989. Nonhuman bone modification in Miocene fossils from Pakistan, p. 99120. In Bonnichsen, R. and Sorg, M. H. (eds.), Bone Modification. Center for the Study of First Americans, University of Maine, Orono.Google Scholar
Bromley, R. G. 1975. Trace fossils at omission surfaces, p. 399428. In Frey, R. W. (ed.), The Study of Trace Fossils. Springer, New York.CrossRefGoogle Scholar
Chin, K., and Bishop, J. 2004. Traces within traces: Evidence for coprophagy in a probable theropod coprolite from the Jurassic Morrison Formation of Utah, USA, p. 26. In Buatois, L. A. and Gabriela Magnano, M. (eds.), First International Congress on Ichnology Abstract Book.Google Scholar
Cifelli, R. L. 1990. Cretaceous mammals of southern Utah. I. Marsupials from the Kaiparowits Formation (Judithian). Journal of Vertebrate Paleontology, 10:295319.CrossRefGoogle Scholar
Clarke, J. M. 1921. Organic dependence and disease: Their origin and significance. New York State Museum Bulletin, 221–222:1113.CrossRefGoogle Scholar
Denys, C. 1986. Le gisement Pliocene de Laetoli (Tanzanie Afrique de l'Est): Analyse taphonomique des assemblages de micro-vertebrate. Palaeontographica A, 194:6998.Google Scholar
Eaton, J. G. 1991. Biostratigraphic framework for the Upper Cretaceous rocks of the Kaiparowits Plateau, southern Utah, p. 4761. In Nations, J. D. and Eaton, J. G. (eds.), Stratigraphy, Depositional Environments, and Sedimentary Tectonics of the Western Margin, Cretaceous Western Interior Seaway. Geological Society of America Special Paper, 260.Google Scholar
Eaton, J. G. 2002. Multituberculate mammals from the Wahweap (Campanian, Aquilan) and Kaiparowits (Campanian, Judithian) formations, within and near Grand Staircase-Escalante National Monument, southern Utah. Miscellaneous Publication 02–4, Utah Geological Survey, 66 p.Google Scholar
Eaton, J. G., and Cifelli, R. L. 1988. Preliminary report on Late Cretaceous mammals of the Kaiparowits Plateau, southern Utah. University of Wyoming Contributions to Geology, 26:4555.Google Scholar
Fejfar, O., and Kaiser, T. M. 2005. Insect bone-modification and paleoecology of Oligocene mammal-bearing sites in the Doupov Mountains, northwestern Bohemia. Palaeontologia Electronica, 8:111.Google Scholar
Fiorillo, A. R. 1988. Aspects of bone modifications applied to time resolution in the fossil record—An example from the Miocene of western Nebraska. Current Research in the Pliocene, University of Maine, 5:103109.Google Scholar
Fiorillo, A. R. 1989. An experimental study of trampling: Implications for the fossil record, p. 6172. In Bonnichsen, R. and Sorg, M. H. (eds.), Bone Modification. Center for the Study of First Americans, University of Maine, Orono.Google Scholar
Getty, M., Roberts, E., Loewen, M., Smith, J., Gates, T., and Sampson, S. 2003. Taphonomy of a chasmosaurine ceratopsian skeleton from the Campanian Kaiparowits Formation, Grand Staircase-Escalante National Monument, Utah. Journal of Vertebrate Paleontology, 23(3):54A.Google Scholar
Hasiotis, S. T., and Fiorillo, A. R. 1997. Dermestid beetle borings in dinosaur bones, Dinosaur National Monument, Utah: Additional keys to bone bed taphonomy. South Central and Rocky Mountain Sections GSA Annual Meeting Abstracts with Programs, 29:13.Google Scholar
Hasiotis, S. T., Fiorillo, A. R., and Hanna, R. 1999. Preliminary report on borings in Jurassic dinosaur bones: Evidence for invertebrate-vertebrate interactions, p. 193200. In Gillette, D. D. (ed.), Miscellaneous Publication, Utah Geological Survey, 99–1.Google Scholar
Hill, A. 1987. Damage to some fossil bones from Laetoli, p. 543544. In Leakey, M. D. and Harris, J. M. (eds.), Laetoli, A Pliocene Site in Northern Tanzania. Clarendon, Oxford, United Kingdom.Google Scholar
Hinton, H. E. 1945. A Monograph of the Beetles Associated with Stored Products. British Museum, London, 234 p.Google Scholar
Jacobsen, A. R. 1998. Feeding behavior of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology, 13:1726.CrossRefGoogle Scholar
Kaiser, T. M. 2000. Proposed fossil insect modification to fossil mammalian bone from Plio–Pleistocene homonid-bearing deposits of Laetoli (northern Tanzania). Annals of the Entomological Society of America, 93:693700.CrossRefGoogle Scholar
Kelly, S. R. A., and Bromley, R. G. 1984. Ichnological nomenclature of clavate borings. Palaeontology, 27:793807.Google Scholar
Kirkland, J. I., Delgado, D. R., Chimedtseren, A., Hasiotis, S. T., and Fox, E. J. 1998. Insect? bored dinosaur skeletons and associated pupae from the Djadokhta Fm. (Cretaceous, Campanian). Journal of Vertebrate Paleontology, 18:56A.Google Scholar
Kitching, J. W. 1980. On some fossil arthropoda from the Limeworks, Makapansgat, Potgietersrus. Palaeontologia Africana, 23:6368.Google Scholar
Krause, D. W., Rogers, R. R., Forster, C. A., Hartman, J. H., Buckley, G. A., and Sampson, S. D. 1999. The Late Cretaceous vertebrate fauna of Madagascar: Implications for Gondwanan paleobiogeography. GSA Today, 9(8):17.Google Scholar
Laws, R. R., Hasiotis, S. T., Fiorillo, A. R., Chure, D. J., Breithaupt, B. H., and Horner, J. R. 1996. The demise of a Jurassic Morrison dinosaur after death—Three cheers for the dermestid beetle. Geological Society of America Abstracts with Programs, 28:530A.Google Scholar
Leymerie, M. A. 1842. Suite de mémoire sur le terrain Crétacé du département de l'Aube. Memoir de la Société géologique de France, 5:134.Google Scholar
Little, W. W. 1995. The influence of tectonics and eustacy on alluvial architecture, Middle Coniacian through Campanian strata of the Kaiparowits Basin, Utah. Unpublished Ph.D. dissertation, University of Colorado, Boulder, 328 p.Google Scholar
Martin, L. D., and West, D. L. 1995. The recognition and use of dermestid (Insecta, Coleoptera) pupation chambers in paleoecology. Palaeogeography, Palaeoclimatology, Palaeoecology, 113:303310.CrossRefGoogle Scholar
Nolte, M. J., Greenhalgh, B. W., Dangerfield, A., Scheetz, R. D., and Britt, B. B. 2004. Invertebrate burrows on dinosaur bones from the Lower Cretaceous Cedar Mountain Formation near Moab, Utah, U.S.A. Geological Society of America Abstracts with Programs, 36(5):379A.Google Scholar
Olsen, S. L., and Shipman, P. 1988. Surface modification on bone: Trampling versus butchery. Journal of Archaeological Sciences, 15:535553.CrossRefGoogle Scholar
Paik, I. S. 2000. Bone chip-filled burrows associated with bored dinosaur bone in floodplain paleosols of the Cretaceous Hasandong Formation, Korea. Palaeogeography, Palaeoclimatology, Palaeoecology, 157:213225.CrossRefGoogle Scholar
Payne, J. A. 1965. A summer carrion study of the baby pig Sus scrofa Linnaeus. Ecology, 46:592602.CrossRefGoogle Scholar
Payne, J. A., and King, E. W. 1968. Arthropod succession and decomposition of buried pigs. Nature, 219:11801181.CrossRefGoogle ScholarPubMed
Potts, R. 1986. Temporal span of bone accumulations at Olduvai Gorge and implications for early hominid foraging behavior. Paleobiology, 12:2531.CrossRefGoogle Scholar
Reed, H. B. 1958. A study of dog carcass communities in Tennessee, with special reference to insects. American Midland Naturalist, 59:213245.CrossRefGoogle Scholar
Roberts, E. M., and Tapanila, L. 2006. A new social insect nest from the Late Cretaceous Kaiparowits Formation of southern Utah. Journal of Paleontology, 80:768774.CrossRefGoogle Scholar
Roberts, E. M., Deino, A. D., and Chan, M. A. 2005. 40Ar/39Ar age of the Kaiparowits Formation, southern Utah, and correlation of coeval strata and faunas along the margin of the Western Interior Basin. Cretaceous Research, 26:307318.CrossRefGoogle Scholar
Roberts, E. M., Rogers, R. R., and Foreman, B. Z. 2003. An experimental approach to identifying and interpreting dermestid (Insecta, Coleoptera) bone modification. Journal of Vertebrate Paleontology, 23:89A.Google Scholar
Rogers, R. R. 1992. Non-marine borings in dinosaur bones from the Upper Cretaceous Two Medicine Formation, northwestern Montana. Journal of Vertebrate Paleontology, 12:528531.CrossRefGoogle Scholar
Rogers, R. R. 2005. Fine-grained debris flows and extraordinary vertebrate burials in the Late Cretaceous of Madagascar. Geology, 33:297300.CrossRefGoogle Scholar
Rogers, R. R., Hartman, J. H., and Krause, D. W. 2000. Stratigraphic analysis of Upper Cretaceous rocks in the Mahajanga Basin, Madagascar: Implications for ancient and modern faunas. Journal of Geology, 108:275301.CrossRefGoogle ScholarPubMed
Rogers, R. R., Krause, D. W., and Curry Rogers, K. 2003. Cannibalism in the Madagascan dinosaur Majungatholus atopus . Nature, 422:515518.CrossRefGoogle ScholarPubMed
Saint-seine, R. 1951. Un cirripede acrothoracique du cretace, Rogerella lecointrei n.g, n.sp. Compte Rendus Hebdomadaires des Seances de l'Academie des Sciences, 233:10511053.Google Scholar
Schwanke, C., and Kellner, A. W. 1999. Presence of insect? borings in synapsid bones from the terrestrial Triassic Santa Maria Formation, southern Brazil. Journal of Vertebrate Paleontology, 19:74.Google Scholar
Tappen, M. 1994. Bone weathering in the tropical rain forest. Journal of Archaeological Science, 21:667673.CrossRefGoogle Scholar
Tiemeier, O. W. 1939. The dermestid method of cleaning skeletons. University of Kansas Science Bulletin, 26:377383.Google Scholar
Tobien, H. 1965. Insecten-Frasspuren an tertian und pleistozanen Saugertier-Knochen. Senckenbergiana Lethaea, 46:441451.Google Scholar
Voigt, E. 1977. On grazing traces produced by the radula of fossil and recent gastropods and chitons. Geological Journal (special issue), 9:335346.Google Scholar
Walker, M. V. 1938. Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proceedings of the United States National Museum, 85:137141.CrossRefGoogle Scholar
West, D. L., and Martin, L. D. 2002. Insect trace fossils as environmental/taphonomic indicators in archaeology and paleoecology. TER–QUA Symposium Series—Institute for Tertiary-Quaternary Studies, 3:163173.Google Scholar
Wilson, M. A., and Palmer, T. J. 1988. Nomenclature of a bivalve boring from the Upper Ordovician of the midwestern United States. Journal of Paleontology, 62:306308.CrossRefGoogle Scholar