Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T23:28:34.894Z Has data issue: false hasContentIssue false

Chemosynthetic bivalves of the family Solemyidae (Bivalvia, Protobranchia) in the Neogene of the Mediterranean Basin

Published online by Cambridge University Press:  14 July 2015

Marco Taviani
Affiliation:
Institute of Marine Sciences, Italian National Research Council, Via Gobetti 101 40129 Bologna, Italy, , ,
Lorenzo Angeletti
Affiliation:
Institute of Marine Sciences, Italian National Research Council, Via Gobetti 101 40129 Bologna, Italy, , ,
Alessandro Ceregato
Affiliation:
Institute of Marine Sciences, Italian National Research Council, Via Gobetti 101 40129 Bologna, Italy, , ,

Abstract

The Mediterranean area is the locus of a variety of deep-sea chemosynthetic environments that have been exploited by bivalves of the family Solemyidae during Cenozoic to present time. Large solemyids represented by the Solemya doderleini group were widely distributed in Neogene deep-sea reducing habitats, including cold vent hydrocarbon sites. Based upon the diagnostic structure of the ligament, Solemya doderleini (Mayer), 1861 and S. subquadrata (Foresti), 1879 are moved to the genus Acharax Dall, 1908. After the Messinian Salinity Crisis Acharax doderleini re-colonized deep-sea sulphide environments up to the Pliocene at least. At present, Acharax occurs in similar settings in the adjacent eastern Atlantic Ocean. Thus far, large solemyids are not documented from the present deep Mediterranean Sea in spite of a vast number of seep and reducing habitats with chemosynthetic biota, especially concentrated in its Eastern basin. Promisingly, however, a single live juvenile specimen of Solemyidae has been recently found at bathyal depth associated with a pockmark in the Nile Deep Sea Fan.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beninger, P. G. and Le Pennec, M. 1997. Reproductive characteristics of a primitive bivalve from a deep-sea reducing environment: Giant gametes and their significance in Acharax alinae (Cryptodonta: Solemyidae). Marine Ecology, Progress Series, 157: 195206.Google Scholar
Bernard, B., Brooks, J., and de Faragó, M. 2004. Asphalt volcanism and chemosynthetic life in the Campeche Knolls, Gulf of Mexico. Science, 304: 9991002.Google Scholar
Borghi, M. 1989. Osservazioni su una specie pliocenica di bivalve: Solenomya doderleini Mayer, 1861. Notiziario della Società Reggiana di Science Naturali, Reggio Emilia 10, 1: 2530.Google Scholar
Bouchet, P. and Rocroi, J.-P. 2010. Nomenclator of Bivalve Families. Malacologia, 52: 1184.CrossRefGoogle Scholar
Bucquoy, E., Dautzenberg, P., and Dollfus, G. 1898. Les Mollusques Marins du Roussillon, II (XII) Pelecypoda, 25: 692745.Google Scholar
Cafici, I. 1883. La formazione miocenica in territorio di Licodia Eubea (Provincia di Catania). Atti Regia Accademia Lincei, 3: 139165.Google Scholar
Campbell, K. A. 1992. Recognition of a Mio-Pliocene cold seep setting from the Northeast Pacific convergent margin, Washington, U.S.A. Palaios, 7: 422433.Google Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232: 362407.CrossRefGoogle Scholar
Carter, J. G., Campbell, D. C., and Campbell, M. R. 2000. Cladistic perspectives on early bivalve evolution. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), Evolutionary Biology of the Bivalvia. Geological Society of London Special Publication, 177: 4779.Google Scholar
Cary, S. C. 1994. Vertical transmission of a chemoautotrophic symbiont in the protobranch bivalve, Solemya reidi . Molecular Marine Biology and Biotechnology, 3: 121130.Google ScholarPubMed
Cavanaugh, C. M. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature, 302: 5861.Google Scholar
Cavanaugh, C. M., McKiness, Z. P., Newton, I. L. G., and Stewart, F. J. 2006. Marine chemosynthetic symbioses. Prokaryotes, 1: 475507.CrossRefGoogle Scholar
Cecioni, G. 1939. Sulla presenza della Solemya doderleini nel Pliocene dei Monti livornesi. Atti della Società Toscana di Scienze Naturali, 48: 37.Google Scholar
Childress, J. J., Fisher, C. R., Brooks, J. M., Kennicutt, M. C. II, Bidigare, R., and Anderson, A. E. 1986. A methanotrophic marine molluscan (Bivalvia, Mytilidae) symbiosis: Mussels fuelled by gas. Science, 233: 13061308.CrossRefGoogle Scholar
Coan, E. V., Scott, P. V., and Bernard, F. R. 2000. Bivalve Seashells of Western North America. Marine Bivalve Mollusks from Arctic Alaska to Baja California. Santa Barbara Museum of Natural History, Monographs 2, Studies in Biodiversity, 2: 1764.Google Scholar
Cope, J. C. W. 1996. Early Ordovician (Arenig) bivalves from the Llangynog Inlier, South Wales. Palaeontology, 39: 9791025.Google Scholar
Cope, J. C. W. 2000. A new look at early bivalve phylogeny. In Harper, E. M., Taylor, J. D., and Crame, J. A. (eds.), Evolutionary Biology of the Bivalvia. Geological Society of London Special Publication, 177: 8195.Google Scholar
Coppi, F. 1881. Paleontologia modenese o guida al paleontologo con nuove specie. Soliani, Modena, 142 p.Google Scholar
Cox, L. R. 1969. Superfamily Solemyacea. In Moore, R. C., (ed.), Geological Society of America and University of Kansas, Boulder, Colorado, Treatise on Invertebrate Paleontology, Mollusca 6 Bivalvia Pt. N: N241N243.Google Scholar
Cunha, M. R., Rodrigues, C. F., Hilário, A., Ravara, A., Moura, C. F., Matzen, J., and Génio, L. 2007. Macrobenthic assemblages in the Gulf of Cadiz—an update on recent investigations. HERMES 2nd Annual Meeting, 24–30 March 2007, Carvoeiro, Portugal. Abstract book, 59.Google Scholar
d'Orbigny, A. 1852. Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonnés faisant suite au cours elémentaire de paléontologie. Masson, Paris, 3: 196 p. + 190 p. index.Google Scholar
Del Bue, G. 1900. Contributo alla conoscenza dei terreni miocenici di Castelnuovo nei Monti. Rivista Italiana di Paleontologia e Stratigrafia, 6: 121136.Google Scholar
Distel, D. L. 1998. Evolution of chemoautotrophic endosymbioses in bivalves. BioScience, 48: 277286.Google Scholar
Di Stefano, G. 1903. Il calcare con grandi Lucine dei dintorni di Centuripe in provincia di Catania. Atti dell'Accademia Gioenia di Scienze Naturali in Catania, 14: 171.Google Scholar
Doeller, J. E., Kraus, D. W., Colacino, J. M., and Wittenberg, J. B. 1988. Gill hemoglobin may deliver sulfide to bacterial symbionts of Solemya velum (Bivalvia, Mollusca). The Biological Bulletin, 175: 388396.Google Scholar
Felbeck, H. 1983. Sulfide oxidation and carbon fixation by the gutless clam Solemya reidi: An animal-bacteria symbiosis. Journal of Comparative Physiology, B142: 311.Google Scholar
Fisher, C. R. 1990. Chemoautotrophic and methanotrophic symbioses in marine invertebrates. CRC Critical Reviews in Aquatic Sciences, 2: 399436.Google Scholar
Foresti, L. 1877. Le Marne di San Luca e di Paderno e i loro fossili. Rendiconto dell'Accademia delle Scienze dell'Istituto di Bologna, 3: 3041.Google Scholar
Foresti, L. 1879. Contribuzioni alla Conchiologia fossile italiana. Memorie della Accademia delle Scienze dell'Istituto di Bologna, 3, 10: 111129.Google Scholar
Fujikura, K., Kojima, S., Tamaki, K., Maki, Y., Hunt, J., and Okutani, T. 1999. The deepest chemosynthesis-based community yet discovered from the hadal zone, 7326 m deep, in the Japan Trench. Marine Ecology Progress Series, 190: 1726.Google Scholar
Fujikura, K., Fujikura, Y., Kojima, S., and Okutani, T. 2002a. Microscale distribution of molluscs occurring in deep-sea chemosynthesis-based communities in the Japan Trench. Venus, 60: 225236.Google Scholar
Fujikura, K., Hashimoto, J., and Okutani, T. 2002b. Estimated population densities of megafauna in two chemosynthesis-based communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos Research, 57: 2130.Google Scholar
Fujiwara, Y., Okutani, T., Yamanaka, T., Kawato, M., Mizota, C., Fujikura, K., Yamamoto, T., and Okoshi, K. 2009. Solemya pervernicosa lives in sediment underneath submerged whale carcasses: Its biological significance. Venus, 68: 2737.Google Scholar
Gill, F. L., Harding, I. C., Little, C. T. S., and Todd, J. A. 2005. Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 227: 191209.Google Scholar
Goedert, J. L. and Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology, 18: 11821185.Google Scholar
Goedert, J. L. and Campbell, K. A. 1995. An early Oligocene chemosynthetic community from the Makah Formation, Northwestern Olympic Peninsula, Washington. The Veliger, 38: 2229.Google Scholar
Goedert, J. L. and Benham, S. R. 2003. Biogeochemical process at ancient methane seeps: the Bear River in southwestern Washington. In Swanson, T. W. (ed.) Western Cordillera and adjacent areas: Boulder, Colorado. Geological Society of America Field Guide, 4: 201208.Google Scholar
Goedert, J. L., Thiel, V., Schmale, O., Rau, W. W., Michaelis, W., and Peckmann, J. 2003. The Late Eocene ‘Whiskey Creek’ methaneseep deposit (western Washington State). Pt. I: Geology, palaeontology and molecular geobiology. Facies, 48: 223240.Google Scholar
Gustafson, R. G. and Reid, R. G. B. 1988a. Larval and post-larval morphogenesis in the gutless protobranch bivalve Solemya reidi (Cryptodonta, Solemyidae). Marine Biology, 97: 373387.CrossRefGoogle Scholar
Gustafson, R. G. and Reid, R. G. B. 1988b. Association of bacteria with larvae of the gutless protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). Marine Biology, 97: 373387.Google Scholar
Gustafson, R. G., Gustafson, B. D., and Reid, R. G. B. 1987. Continuous reproduction in the protobranch bivalve Solemya reidi (Cryptodonta: Solemyidae). The Veliger, 29: 367373.Google Scholar
Hörnes, M. 1862-1870. Die fossilen Mollusken des Tertiär-Beckens von Wien. II. Bivalven. Abhandlungen auf Kaiserlich-Königlichen Geologischen Reichsanstalt (1856–1870), 4: 1479.Google Scholar
Hörnes, R. 1875. Die Fauna des Schliers von Ottnang. Jahrbuch der Kaiserlich-Königlichen Geologischen Reichsanstalt, 25: 333431.Google Scholar
Ivanov, M., Mazzini, A., Blinova, V., Kozlova, E., Laberg, J. S., Matveeva, T., Taviani, M., and Kaskov, N. 2010. Seep mounds on the southern Vøring Plateau (offshore Norway). Marine and Petroleum Geology, 27: 12351261.Google Scholar
Jenkins, R. G., Kaim, A., Hikida, Y., and Tanabe, K. 2007. Methaneflux-dependent lateral faunal changes in a Late Cretaceous chemosymbiotic assemblage from the Nakagawa area of Hokkaido, Japan. Geobiology, 5: 127139.CrossRefGoogle Scholar
Kamenev, G. M. 2009. North Pacific species of the genus Solemya Lamarck, 1818 (Bivalvia: Solemyidae), with notes on Acharax johnsoni (Dall, 1891). Malacologia, 51: 233261.Google Scholar
Kanie, Y. and Nishida, T. 2000. New species of chemosynthetic bivalves, Vesicomya and Acharax, from the Cretaceous deposits of northwestern Hokkaido. Science Reports of the Yokosuka City Museum, 44: 6368.Google Scholar
Kanno, S. 1971. Tertiary molluscan fauna from the Yakataga District and adjacent areas of Southern Alaska. Palaeontological Society of Japan Special Papers, 16: 1154.Google Scholar
Kiel, S. 2010. The fossil record of vent and seep molluscs. In Kiel, S. (ed.), The Vent and Seep Biota. Topics in Geobiology, 33: 255278.Google Scholar
Kiel, S., Amano, K., and Jenkins, R. G. 2008. Bivalves from Cretaceous cold-seep deposits on Hokkaido, Japan. Acta Palaeontologica Polonica, 53: 525537.Google Scholar
Kiel, S. and Little, C. T. S. 2006. Cold-Seep Mollusks are older than the general marine mollusk fauna. Science, 313: 14291431.Google Scholar
Kiel, S. and Peckmann, J. 2007. Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia, 40: 345357.Google Scholar
Kittl, E. 1887. Die Miocenablagerungen des Ostrau-Karwiner Steinkohlenrevieres und deren Faunen.–Annalen Des K. K. Naturhistorischen Hofmuseums, Wien, 2: 217282.Google Scholar
Kraus, D. W., Doeller, J. E., and Wittenberg, J. B. 1992. Hydrogen sulfide reduction of symbiont cytochrome c552 in gills of Solemya reidi (Mollusca). Biology Bulletin, 182: 435443.Google Scholar
Krueger, D. M. and Cavanaugh, C. M. 1997. Phylogenetic diversity of bacterial symbionts of Solemya hosts based on comparative sequence analysis of 16S rRNA genes. Applied Environmental Microbiology, 63: 9198.Google Scholar
Kuznetsov, A. P., Ohta, S., and Endow, K. 1990. Morphofunctional consequences of bacterial symbiotrophy in Solemya (Petrasma) pusilla (Protobranchia, Bivalvia) from Sagami Bay (central Japan). Izvestiya Akademii Nauk S.S.S.R., Seriya Biologicheskaya, 6: 895903.Google Scholar
Le Pennec, M., Beninger, P. G., and Herry, A. 1995. Feeding and digestive adaptations of bivalve molluscs to sulphide-rich habitats. Comparative Biochemistry and Physiology, 111A: 183189.Google Scholar
Little, C. T. S. and Vrijenhoek, R. C. 2003. Are hydrothermal vent animals living fossils? Trends in Ecology and Evolution, 18: 582588.Google Scholar
Majima, R., Nobuhara, T., and Kitazaki, T. 2005. Review of fossil chemosynthetic assemblages in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 227: 86123.CrossRefGoogle Scholar
Malatesta, A. 1955. Dentilucina doderleini D. St. nel Pliocene inferiore della Sicilia. Bollettino del Servizio Geologico d'Italia, 77: 455460.Google Scholar
Manzoni, A. 1876. Lo Schlier di Ottnang nell'Alta Austria e lo Schlier delle colline di Bologna. Bollettino del R. Comitato Geologico d'Italia, 7: 122216.Google Scholar
Manzoni, A. 1880. Il Tortoniano e i suoi fossili nella Provincia di Bologna. Bollettino del R. Comitato Geologico D'Italia, 11: 510520.Google Scholar
Mayer, M. C. 1861. Description de Coquilles fossiles des terrains tertiaires supérieurs. Journal de Conchyliologie, 3e série, 9: 358373.Google Scholar
Mayer, M. C. 1868. Description de Coquilles fossiles des terrains tertiaires supérieurs. Journal de Conchyliologie, 3e série, 13: 102191.Google Scholar
Merlino, B., (ed.) 2007. Catalogo dei tipi e degli esemplari figurati della collezione Bellardi e Sacco. Pt. III. Museo Regionale di Scienze Naturali, Torino, Cataloghi 27, 271 p.Google Scholar
Métivier, B. and von Cosel, R. 1993. Acharax alinae n. sp., Solemyidae (Mollusca: Bivalvia) géante du basin de Lau. Comptes Rendu de l'Académie de Sciences Paris, 316: 229237.Google Scholar
Mikkelsen, P. M. and Bieler, R. 2008. Seashells of southern Florida. Living marine mollusks of the Florida Keys and adjacent regions. Bivalves. Princeton and Oxford, Princeton University Press, 503 p.Google Scholar
Monegatti, P., Raffi, S., Roveri, M., and Taviani, M. 2001. One day trip in the outcrops of Castell'Arquato Plio-Pleistocene Basin: From the badland of Monte Giogo to the Stirone River. Editografica, Bologna, Italy, 26 p.Google Scholar
Monegatti, P. and Raffi, S. 2001. Taxonomic diversity and stratigraphic distribution of Mediterranean Pliocene bivalves. Palaeogeography, Palaeoclimatology, Palaeoecology, 165: 171193.Google Scholar
Monegatti, P. and Raffi, S. 2010. The Messinian marine molluscs record and the dawn of the eastern Atlantic biogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 297: 111.Google Scholar
Nelli, B. 1903. Fossili miocenici del Macigno di Porretta. Bollettino della Società Geologica Italiana, 22: 181252.Google Scholar
Nelli, B. 1910. Fossili miocenici del modenese. Bollettino della Società Geologica Italiana, 28: 489523 (“1909”).Google Scholar
Nelli, B. 1913. Fossili del Miocene Medio delle colline bolognesi. Bollettino della Società Geologica Italiana, 32: 305358.Google Scholar
Neulinger, S. C., Sahling, H., Sühling, J., and Imhoff, J. F. 2006. Presence of two phylogenetically distinct groups in the deep-sea mussel Acharax (Mollusca: Bivalvia: Solemyidae). Marine Ecology, Progress Series, 312: 161168.Google Scholar
Nevesskaya, L. A. 2008. Dynamics of taxonomic diversity of bivalves in the Phanerozoic. Paleontological Journal, 42: 335342.Google Scholar
Niemann, H., Duarte, J., Hensen, C., Omoregie, E., Magalhães, V. H., Elvert, M., Pinheiro, L. M., Kopf, A., and Boetius, A. 2006. Microbial methane turnover at mud volcanoes of the Gulf of Cadiz. Geochimica et Cosmochimica Acta, 70: 53365355.Google Scholar
Nobuhara, T. 1992. Bathyal molluscan assemblages in the Plio-Pleistocene in the Kakegawa area, Shizuoka Prefecture, central Japan; their relationships with water masses. Bulletin of the Mizunami Fossil Museum, 19: 515528.Google Scholar
Nobuhara, T. and Tanaka, T. 1993. Palaeoecology of Akebiconcha kawamurai (Bivalvia: Vesicomyidae) from the Pliocene Tamari Silt Formation in the Kakegawa area, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 102: 2740.Google Scholar
Ohta, S. 1990. Ecological observations and remarks on the cold seep communities in Sagami Bay, central Japan. JAMSTEC Deep-Sea Research, 6: 81195.Google Scholar
Okutani, T., Hashimoto, J., and Miura, T. 2004. A new species of solemyid bivalve from near submarine fumaroles in Kagoshima Bay, Japan. Venus, 62: 9196.Google Scholar
Oliver, G. P. 1995. Mollusca from the oxygen minimum zone of the Oman Margin. In Guerra, A., Rolán, E., and Rocha, F. (eds.), 12th International Malacological Congress Vigo, Spain., Abstract Vol. 103.Google Scholar
Oliver, G., Rodigues, C. F., and Cunha, M. R. 2011. Chemosymbiotic bivalves from the mud volcanoes of the Gulf of Cadiz, NE Atlantic, with descriptions of new species of Solemyidae, Lucinidae and Vesicomyidae. ZooKeys, 113: 138.Google Scholar
Olu-Le Roy, K., Sibuet, M., Fiala-Médioni, A., Gofas, S., Salas, C., Mariotti, A., Foucher, J. P., and Woodside, J. 2004. Cold seep communities in the deep eastern Mediterranean Sea: Composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Research, Pt. I, 51: 19151936.Google Scholar
Orange, D. L. and Campbell, K. A. 1997. Cold seeps in Monterey Bay, California and offshore Oregon as modern-day analogs to the Hoh Accretionary Complex and Quinault Formation, Washington. Washington Geology, 25: 313.Google Scholar
Peckmann, J., Girschler, E., Oschmann, W., and Reitner, J. 2001. An early Carboniferous seep community and hydrocarbon-derived carbonates from the Harz Mountains, Germany. Geology, 29: 271274.Google Scholar
Peckmann, J., Goedert, J. L., Thiel, V., Michaelis, W., and Reitner, J. 2002. A comprehensive approach to the study of methaneseep deposits from the Lincoln Creek Formation, western Washington State, U.S.A. Sedimentology, 49: 855873.Google Scholar
Pelosio, G. 1966. La malacofauna dello stratotipo del Tabianiano (Pliocene inferiore) di Tabiano Bagni (Parma). Bollettino della Società Paleontologica Italiana, 5: 101183.Google Scholar
Petrucci, F. 1960. Osservazioni sulla zona collinare tra il T. Taro e il T. Recchio (Parma) con particolare riguardo al limite Mio-Pliocene. Atti Società Italiana di Scienze Naturali, 99: 314333.Google Scholar
Pinheiro, L. M., Ivanov, M. K., Sautkin, A., Akhmanov, G., Magalhães, V. H., Volkonskaya, A., Monteiro, J. H., Somoza, L., Gardner, J., Hamouni, N., and Cunha, M. R. 2003. Mud volcanism in the Gulf of Cadiz: results from the TTR-10 cruise. Marine Geology, 195: 131151.Google Scholar
Pojeta, J. 1988. The origin of Paleozoic diversification of solemyoid pelecypods. Memoir of the New Mexico Bureau of Mines and Mineral Resources, 44: 201271.Google Scholar
Ponzi, G. 1876. I fossili del Monte Vaticano. Atti dell'Accademia dei Lincei, 3(2): 137.Google Scholar
Poutiers, J. M. 1987. Bivalves (Acephales, Lamellibranches, Pelecypodes). Laboratoire de Biologie des Invertébrés marins et Malacologie Muséum national d'Histoire naturelle Paris, France, p. 370389.Google Scholar
Powell, M. A. and Somero, G. N. 1986. Adaptations to sulphide by hydrothermal vent animals: Sites and mechanisms of detoxification and metabolism. Biologic Bulletin Mar. Biol. Lab. Woods Hole, 171: 274290.Google Scholar
Principi, P. 1928. Intorno alla suddivisione dei terreni del Terziario Inferiore e Medio dell'Italia centrale. Bollettino della Società Geologica Italiana, 46: 3150 (1927).Google Scholar
Principi, P. 1930. I terreni Terziari della regione compresa tra il bacino del Mugello e la Valle del Reno (Appennino Tosco-Bolognese). Bollettino della Società Geologica Italiana, 49: 161169.Google Scholar
Ravara, A., Cunha, M. R., and Rodrigues, C. F. 2007. The occurrence of Natsushima bifurcata (Polychaeta: Nautiliniellidae) in Acharax hosts from mud volcanoes in the Gulf of Cadiz (south Iberian and north Moroccan Margins). Scientia Marina, 71: 95100.Google Scholar
Reid, R. G. B. 1990. Evolutionary implications of sulphide-oxidizing symbionts in bivalves, p. 127140. In Morton, B. (ed.), The Bivalvia—proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge, Edinburgh, 1986. Hong Kong University Press, Hong Kong.Google Scholar
Reid, R. G. B. and Bernard, F. R. 1980. Gutless bivalves. Science, 208: 609610.Google Scholar
Rodrigues, C. F., Duperron, S., and Gaudron, S. M. 2011. First documented record of a living solemyid bivalve in a pockmarck of the Nile Deep-sea Fan (eastern Mediterranean Sea). Marine Biodiversity Records, 4 p.Google Scholar
Rodrigues, C. F., Webster, G., Cunha, M. R., Duperron, S., and Weightman, A. J. 2010. Chemosynthetic bacteria found in bivalves from mud volcanoes in the Gulf of Cadiz. FEMS Microbiology Ecology, 73: 486499.Google Scholar
Rögl, F., Ćorić, S., Harzhauser, M., Jimenez-Moreno, G., Kroh, A., Schultz, O., Wessel, Y. G., and Zorn, I. 2008. The Middle Miocene Badenian stratotype at Baden-Sooss (Lower Austria). Geologica Carpathica, 59: 367374.Google Scholar
Rueda, J. L., Marina, P., Urra, J., and Salas, C. 2009. Changes in the composition and structure of a molluscan assemblage due to eelgrass loss in southern Spain (Alboran Sea). Journal of the Marine Biological Association of the United Kingdom, 89: 13191330.CrossRefGoogle Scholar
Sacco, F. 1889. Catalogo paleontologico del bacino Terziario del Piemonte. Bollettino della Società Geologica Italiana, 8: 281356.Google Scholar
Sacco, F. 1901. I Molluschi dei Terreni Terziarii del Piemonte e della Liguria. Parte 29. Bollettino del Musei di Zoologia ed Anatomia comparata delle Reale Università di Torino, 16: 216 p.Google Scholar
Sahling, H., Rickert, D., Lee, R. W., Linke, P., and Suess, E. 2002. Macrofaunal community structure and sulphide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology, Progress Series, 231: 121138.Google Scholar
Scott, K. M. 2005. Allometry of gill weights, gill surface areas, and foot biomass δ13C values of the chemoautotroph-bivalve symbiosis Solemya velum . Marine Biology, 147: 935941.Google Scholar
Scott, K. M. and Cavanaugh, C. M. 2007. CO2 uptake and fixation by endosymbiotic chemoautotrophs from the bivalve Solemya velum . Applied and Environmental Microbiology, 73: 11741179.Google Scholar
Sibuet, M. and Olu-Le Roy, K. 2002. Cold seep communities on continental margins: Structure and quantitative distribution relative to geological and fluid venting patterns, p. 235251. In Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B. B., Schlüter, M., and Van Weering, T. (eds.). Ocean Margin Systems. Berlin and Heidelberg, Springer-Verlag.Google Scholar
Sismonda, E. 1847. Synopsis methodica animalium invertebratorum pedemontani fossilium. Augustae Taurinorum, Typis Regiis, viii + 62 p.Google Scholar
Stewart, F. J. and Cavanaugh, C. M. 2006. Bacterial endosymbioses in Solemya (Mollusca: Bivalvia)—model systems for studies of symbiont-host adaptation. Antonie van Leeuwenhoek, 90, 4: 343360.Google Scholar
Suess, E., Carson, B., Ritger, S. D., Casey Moore, J., Jones, M. L., Kulm, L. D., and Cochrane, G. R. 1985. Biological communities at vent sites along the subduction zone off Oregon. Bulletin of the Biological Society of Washington, 6: 475484.Google Scholar
Tate, Y. and Majima, R. 1998. A chemosynthetic fossil community related to cold seeps in the outer shelf environment—a case study in the Lower Pleistocene Koshiba Formation, Kasuza Group, central Japan. Journal of the Geological Society of Japan, 104: 2441.Google Scholar
Taviani, M. 1994. The “calcari a Lucina” macrofauna reconsidered: Deep-sea faunal oases from Miocene-age cold vents in the Romagna Apennine, Italy. Geo-Marine Letters, 14: 185191.Google Scholar
Taviani, M. 2001. Fluid venting and associated processes, p. 351366. In Vai, G. B., Martini, P. I. (eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins. Kluwer Academic Publishers, London.Google Scholar
Taviani, M. 2002. The Mediterranean benthos from late Miocene up to present: Ten million years of dramatic climatic and geological vicissitudes. Biologia Marina Mediterranea, 9: 445463.Google Scholar
Taviani, M. 2004. Shaping the biogeography of the Mediterranean basin: One geologist's perspective. In Marine biogeography of the Mediterranean Sea: Patterns and dynamics of biodiversity. Biogeographia, 24: 1522 (2003).Google Scholar
Taviani, M. 2011. The deep-sea chemoautotroph microbial world as experienced by the Mediterranean metazoans through time. Lecture Notes on Earth Sciences. Springer publishers series. In Reitner, J., Quéric, N.-V., and Arp, G. (eds.), Advances in Stromatolite Geobiology, Lecture Notes in Earth Sciences, 131: 277295. Springer-Verlag Berlin Heidelberg.Google Scholar
Taviani, M., Roveri, M., Aharon, P., and Zibrowius, H. 1997. A Pliocene deep water cold seep (Stirone River, N. Italy). In COLD-EVENT International Workshop: Hydrocarbon Seepage and Chemosynthesis in Tethyan Relic Basins: Products, Processes and Causes. Abstracts: 20.Google Scholar
Taylor, J. D. and Glover, E. A. 2010. Chemosynthetic bivalves. In Kiel, S. (ed.), The Vent and Seep Biota. Topics in Geobiology 33: 107135.Google Scholar
Taylor, J. D. and Kiel, S. 2010. Chemosynthetically-Driven Ecosystems in the Deep Sea, In Kiel, S. (ed.), The Vent and Seep Biota. Topics in Geobiology 33: 114.Google Scholar
Taylor, J. D., Glover, E. A., and Williams, S. T. 2008. Ancient chemosynthetic bivalves: Systematics of Solemyidae from eastern and southern Australia (Mollusca: Bivalvia). Memoirs Queensland Museum, Nature, 54: 75103.Google Scholar
Templado, J. and Villanueva, R. 2010. Checklist of Phylum Mollusca. p. 148198. In Coll, M., et al. (eds.), The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5(8): 36 p.Google Scholar
Tunnicliffe, V., Juniper, S. K., and Sibuet, M. 2003. Reducing environments of the deep-sea floor, p. 81110. In Tyler, P. A. (ed.), Ecosystems of the deep oceans. Elsevier, Amsterdam.Google Scholar
Turner, R. D. 1985. Notes on molluscs of deep-sea vents and reducing sediments. In Perspectives in malacology: A symposium to honor of Dr. Melbourne R. Carriker. American Malacological Bulletin, Special Edition, 1: 2334.Google Scholar
Vokes, H. E. 1955. Notes on Tertiary and Recent Solemyacidae. Journal of Paleontology, 29: 534545.Google Scholar
Zenetos, A., Vardala-Theodorou, E., and Alexandrakis, C. 2005. Update of the marine Bivalvia Mollusca checklist in Greek Waters. Journal of Marine Biology Association of United Kingdom, 85: 993998.Google Scholar
Zuccari, A. 1882. Catalogo dei Fossili dei dintorni di Roma. Silviucci, Roma.Google Scholar