Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T04:15:22.909Z Has data issue: false hasContentIssue false

Changes in Permian marine ostracode faunas during regression, Florena Shale, northeastern Kansas

Published online by Cambridge University Press:  14 July 2015

Gary V. Costanzo
Affiliation:
Department of Geology, Museum of Invertebrate Paleontology
Roger L. Kaesler
Affiliation:
Paleontological Institute, The University of Kansas, Lawrence 66045

Abstract

The Florena Shale (Permian, Wolfcampian) of the Midcontinent of North America was deposited in a restricted marine basin. Shifting environments due to marine regression caused a gradual change in the ostracode fauna. Cluster analysis and ordination by nonmetric multidimensional scaling of data on ostracode relative abundances revealed three ostracode assemblages, each characteristic of a different environment. The Cryptobairdia seminalis assemblage from the lowest Florena Shale is characteristic of deeper water, offshore, marine environments with only minor influx of terrigenous mud. The Amphissites centronotus assemblage found above the C. seminalis assemblage occupied a similar environment, but with greater influx of terrigenous mud and intervals of increased turbidity. The Knightina texana assemblage occurs stratigraphically highest and probably represents a quiet-water, very shallow, nearshore, marine environment. Although protected from strong wave and current activity, the water mass was occasionally turbid.

Species diversity of ostracodes is high both at the base of the Florena Shale, which was deposited in the most offshore position, and again at the top of the lower part of the Florena Shale, which was deposited nearer to the shore. In contrast to diversities of assemblages of ostracodes from similar environments in other stratigraphic units, the K. texana assemblage has an anomalously high diversity. This is due in part to time averaging of adjacent ostracode assemblages and a strong taphonomic overprint.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brillouin, L. 1962. Science and Information Theory, 2nd ed. Academic Press, Inc., New York, 347 p.Google Scholar
Brondos, M. D., and Kaesler, R. L. 1976. Diversity of assemblages of late Paleozoic Ostracoda, p. 213234. In Scott, R. W. and West, R. R. (eds.), Structure and Classification of Paleocommunities. Dowden, Hutchinson, and Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Coryell, H. N., and Billings, G. D. 1932. Pennsylvanian Ostracoda of the Wayland Shale of Texas. American Midland Naturalist, 13:170189.Google Scholar
Costanzo, G. V. 1986. Temporal changes in Permian marine ostracode faunas with regression, Florena Shale, northeastern Kansas. Unpubl. M.S. thesis, University of Kansas, Lawrence, 62 p.Google Scholar
Delo, D. M. 1930. Some Upper Carboniferous Ostracoda from the Shale basin of western Texas. Journal of Paleontology, 4:152178.Google Scholar
Dennison, J. M., and Hay, W. W. 1967. Estimating the needed sampling area for subaquatic ecologic studies. Journal of Paleontology, 41:706708.Google Scholar
Geinitz, H. B. 1867. Carboniferous und Dyas in Nebraska. Verhandlungen der Kaiserlichen Leopoldinische-Carolinischen Deutschen Academie der Naturforscher, Band 33, Dresden, p. 2.Google Scholar
Haack, R. C., and Kaesler, R. L. 1980. Upper Carboniferous ostracode assemblages from a mixed carbonate-terrigenous-mud environment. Lethaia, 13:147156.Google Scholar
Harlton, B. H. 1927. Some Pennsylvanian Ostracoda of the Glenn and Hoxbar Formations of southern Oklahoma and of the upper part of the Cisco Formation of northern Texas. Journal of Paleontology, 1:203212.Google Scholar
Harlton, B. H. 1928. Pennsylvanian ostracods of Oklahoma and Texas. Journal of Paleontology, 2:132141.Google Scholar
Harlton, B. H. 1929. Pennsylvanian Ostracoda from Menard County, Texas. University of Texas Bulletin, Bureau of Economic Geology, No. 2901:139161; 4 Pls., p. 212218.Google Scholar
Harris, R. W., and Lalicker, C. G. 1932. New Upper Carboniferous Ostracoda from Oklahoma and Kansas. American Midland Naturalist, 13:396409.Google Scholar
Imbrie, J. 1955. Quantitative lithofacies and biofacies study of the Florena Shale (Permian) of Kansas. American Association of Petroleum Geologists Bulletin, 39:649670.Google Scholar
Imbrie, J., Laporte, L. F., and Merriam, D. 1959. Beattie Limestone facies and their bearing on cyclical sedimentation theory. Kansas Geological Society Bulletin, 24th Field Conference, p. 6978.Google Scholar
Imbrie, J., Laporte, L. F., and Merriam, D. 1964. Beattie limestone facies (Lower Permian) of the northern Midcontinent. Kansas Geological Survey Bulletin, 169:219238.Google Scholar
Kaesler, R. L., and Denver, L. E. In press. Distribution and diversity of nearshore Ostracoda: environmental control in the early Permian. Proceedings of the Ninth International Symposium on Ostracoda, Shizuoka, Japan, 1985.Google Scholar
Kaesler, R. L., and Herricks, E. E. 1977. Analysis of data from biological surveys of streams: diversity and sample size. Water Resources Bulletin, American Water Resources Association, 13:125135.Google Scholar
Kaesler, R. L., and Mulvany, P. S. 1976. Fortran IV program to compute replicated diversity indices for random samples of specified size. Computers and Geosciences, 2:515519.Google Scholar
Kellett, B. 1933. Ostracodes from the Upper Pennsylvanian and the Lower Permian strata of Kansas: I. The Aparchitidae, Beyrichiidae, Glyptopleuridae, Kloedenellidae, Kirkbyidae, and Youngiellidae. Journal of Paleontology, 7:59108.Google Scholar
Kellett, B. 1934. Ostracodes from the Upper Pennsylvanian and the Lower Permian strata of Kansas: II. The genus Bairdia . Journal of Paleontology, 8:120138.Google Scholar
Kellett, B. 1935. Ostracodes from the Upper Pennsylvanian and the Lower Permian of Kansas: III. Bairdiidae (concluded), Cytherellidae, Cypridinidae, Entomochonchidae, Cytheridae and Cypridae. Journal of Paleontology, 9:132166.Google Scholar
Knight, J. B. 1928a. Some Pennsylvanian ostracodes from the Henrietta Formation of eastern Missouri. Pt. I. Journal of Paleontology, 2:229267.Google Scholar
Knight, J. B. 1928b. Some Pennsylvanian ostracodes from the Henrietta Formation of eastern Missouri. Pt. II. Journal of Paleontology, 2:318337.Google Scholar
Kornicker, L. S. 1954. Distribution of ostracodes in the Florena Shale. Unpubl. M.S. thesis, Columbia University, New York, 60 p.Google Scholar
Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29:127.Google Scholar
Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29:115129.Google Scholar
Lalicker, C. G. 1935. Paleontological notes: Cavellina nebrascensis (Geinitz). Journal of Paleontology, 9:744745.Google Scholar
Lane, N. G. 1964. Paleoecology of the Council Grove Group (Lower Permian) in Kansas, based upon microfossil assemblages. Kansas Geological Survey Bulletin, 170(5):123.Google Scholar
Laporte, L. F. 1962. Paleoecology of the Cottonwood Limestone (Permian), northern Midcontinent. Geological Society of America Bulletin, 55:1272.Google Scholar
Melchert, G. D. 1982. Evolution of the ostracode community associated with Myalina (Orthomyalina). Unpubl. M.S. thesis, University of Kansas, Lawrence, 63 p.Google Scholar
Merriam, D. F. 1963. The geologic history of Kansas. Kansas Geological Survey Bulletin, 162, 317 p.Google Scholar
Peterson, R. M., and Kaesler, R. L. 1980. Distribution and diversity of ostracode assemblages from the uppermost Hamlin Shale and the Americus Limestone (Permian, Wolfcampian) in northeastern Kansas. University of Kansas Paleontological Contributions, Paper 97, 26 p.Google Scholar
Pielou, E. C. 1969. An Introduction to Mathematical Ecology. Wiley Interscience, New York, 286 p.Google Scholar
Reider, E. R. 1952. Ostracoda of the Florena Shale of Kansas. Unpubl. M.S. thesis, University of Nebraska, Lincoln, 39 p.Google Scholar
Roundy, P. V. 1926. Mississippian formations of San Saba County, Texas, Part II. The microfauna. U.S. Geological Survey Professional Paper 146:523.Google Scholar
Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. W. H. Freeman and Company, San Francisco, 573 p.Google Scholar
Sohn, I. G. 1960. Paleozoic species of Bairdia and related genera. U.S. Geological Survey Professional Paper 330-A, 105 p.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry, 2nd ed. W. H. Freeman and Company, San Francisco. 859 p.Google Scholar
Ulrich, E. O., and Bassler, R. S. 1906. New American Paleozoic Ostracoda. Notes and descriptions of Upper Carboniferous genera and species. Proceedings of the U.S. National Museum, 30:149164.Google Scholar
Upson, M. E. 1933. The Ostracoda of the Big Blue Series in Nebraska. Nebraska Geological Survey Bulletin 8, 64 p.Google Scholar
Warthin, A. S. Jr. 1930. Micropaleontology of the Wetumka, Wewoka, and Holdenville Formations. Oklahoma Geological Survey Bulletin, 53(4), 95 p.Google Scholar
Yarlot, M. E. 1982. SR: CA, MG:CA, O18: O16, and C13: C12 ratios of Neochonetes granulifer . implications for paleosalinity. Unpubl. M.S. thesis, University of Kansas, Lawrence, 139 p.Google Scholar
Zeller, D. E. N. (ed.). 1968. The stratigraphic succession in Kansas. Kansas Geological Survey Bulletin 189, 81 p.Google Scholar