Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-20T17:32:47.752Z Has data issue: false hasContentIssue false

Cambrian Age 3 small shelly fossils from the Terrades inlier, southern Pyrenees, Spain: Biostratigraphic and paleobiogeographic implications

Published online by Cambridge University Press:  28 February 2022

Elise Wallet
Affiliation:
Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden Université de Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
Maxime Padel
Affiliation:
Bureau de Recherches Géologiques et Minières (BRGM), 23 Avenue Claude Guillemin, 45100 Orléans, France
Léa Devaere
Affiliation:
Université de Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Invalidenstraße 43, 10115 Berlin, Germany
Sébastien Clausen*
Affiliation:
Université de Lille, Centre National de la Recherche Scientifique (CNRS), UMR 8198—Evo-Eco-Paleo, F-59000 Lille, France
J. Javier Álvaro
Affiliation:
Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain
Bernard Laumonier
Affiliation:
École des Mines de Nancy, GeoRessources, UMR 7359, Université de Lorraine, Campus ARTEM, CS14234, 54042 Nancy Cedex, France
*
*Corresponding author.

Abstract

The Cambrian stratigraphic succession of the Pyrenees (SW Europe) has undergone a complex Variscan and Alpine tectonothermal history leading to marked metamorphism and development of cleavage networks, which might partly explain the lack of Cambrian fossiliferous beds. This gap has traditionally precluded its paleobiogeographic and biostratigraphic relationships with other neighboring peri-Gondwanan units. Correlations are only based on lithostratigraphic comparisons and radiometric constraints. In this general scheme, the Terrades inlier (Gerona Province, Spain) provides the only significant and indisputable ‘early Cambrian’ fossil record of the Pyrenees. This predominantly siliciclastic outcrop consists of multiple patch reefs and bioherms having yielded archeocyaths dated at Cambrian Epoch 2, Age 3. This paper describes, for the first time, the microfossil assemblage included in the archeocyathan-microbial reefal complex that crops out in the Terrades inlier to clarify its age and affinities with surrounding tectonostratigraphic units. Reefal flanks of patch reefs have yielded bradoriids, brachiopods, molluscs, tommotiids, chancelloriids, hyoliths, and the problematic fossil (and chronostratigraphically significant) Rhombocorniculum cancellatum Cobbold, 1921. In addition to confirming the previously assigned age of the succession, the recovered fauna emphasizes strong affinities with the surrounding Occitan Domain (Montagne Noire, southern Massif Central, France) and Sardinia (Italy). Along with lithostratigraphic comparison and tectonic considerations, this further supports the recent reconstructions positioning the Pyrenean domain between the Montagne Noire (to the southwest) and Sardinia (further to the northeast) on the Gondwana margin during Cambrian times.

Type
Articles
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Paleontological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abad, A., 1988, El Cámbrico inferior de Terrades (Gerona): Estratigrafía, facies y paleontología: Batallería, v. 2, p. 4756.Google Scholar
Aguilar, C., Montserrat, L., Castiñeiras, P., and Navidad, M., 2014, Late Variscan metamorphic and magmatic evolution in the eastern Pyrenees revealed by U-Pb age zircon dating: Journal of the Geological Society, v. 171, p. 181192, https://doi.org/10.1144/jgs2012-086.Google Scholar
Álvaro, J.J., Monceret, E., Monceret, S., Verraes, G., and Vizcaïno, D., 2010, Stratigraphic record and palaeogeographic context of the Cambrian Epoch 2 subtropical carbonate platforms and their basinal counterparts in SW Europe, West Gondwana: Bulletin of Geosciences, v. 85, p. 573584, https://doi.org/10.3140/bull.geosci.1179.Google Scholar
Álvaro, J.J., Zamora, S., Clausen, S., Vizcaïno, D., and Smith, A.B., 2013, The role of abiotic factors in the Cambrian substrate revolution: A review from the benthic community replacements of West Gondwana: Earth-Science Reviews, v. 118, p. 6982, https://doi.org/10.1016/j.earscirev.2013.01.002.Google Scholar
Álvaro, J.J., Bellido, F., Gasquet, D., Pereira, M.F., Quesada, C., and Sánchez-García, T., 2014a, Diachronism in the late Neoproterozoic–Cambrian arc-rift transition of North Gondwana: A comparison of Morocco and the Iberian Ossa-Morena: Journal of African Earth Sciences, v. 98, p. 113132, https://doi.org/10.1016/j.jafrearsci.2014.03.024.Google Scholar
Álvaro, J.J., Bauluz, B., Clausen, S., Devaere, L., Gil Imaz, A., Monceret, E., and Vizcaïno, D., 2014b, Stratigraphic review of the Cambrian–Lower Ordovician volcanosedimentary complexes from the northern Montagne Noire, France: Stratigraphy, v.11, p. 8396.Google Scholar
Álvaro, J.J., Casas, J.M., and Quesada, C., 2021, Reconstructing the pre-Variscan puzzle of Cambro-Ordovician basement rocks in the southwestern European margin of Gondwana, in Murphy, J.B., Strachan, R.A., and Quesada, C., eds., Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum-Atlantic Region: London, Geological Society, Special Publications, v. 503, p. 531562, https://doi.org/10.1144/SP503-2020-89.Google Scholar
Aramburu, C., Méndez-Bedia, I., Arbizu, M., and García-López, S., 2004, Zona Cantábrica: Estratigrafía: La secuencia preorogénica, in Vera, J., ed., Geología de España: Madrid, Sociedad Geológica de España & Instituto Geológico y Minero de España, pp. 2734.Google Scholar
Babcock, L.E., Peng, S., Zhu, M., Xiao, S., and Ahlberg, P., 2014, Proposed reassessment of the Cambrian GSSP: Journal of African Earth Sciences, v. 98, p. 310, https://doi.org/10.1016/j.jafrearsci.2014.06.023.Google Scholar
Ballèvre, M., Bosse, V., Ducassou, C., and Pitra, P., 2009, Palaeozoic history of the Armorican Massif: Models for the tectonic evolution of the suture zones: Compte Rendus Geosciences, v. 341, p. 174201, https://doi.org/10.1016/j.crte.2008.11.009.Google Scholar
Balthasar, U., 2009, The brachiopod Eoobolus from the early Cambrian Mural Formation (Canadian Rocky Mountains): Paläontologische Zeitschrift, v. 83, p. 407418, https://doi.org/10.1007/s12542-009-0026-4.Google Scholar
Barnolas, A., Chiron, J.C., and Guérangé, B., 1996, Synthèse Géologique et Géophysique des Pyrénées, Volume 1 : Introduction, Géophysique, Cycle Hercynien: Madrid, Bureau de Recherches Géologiques et Minières, Orléans-Instituto Tecnológico Geominero de España, 729 p.Google Scholar
Baudin, T., Autran, A., Guitard, G., and Laumonier, B., 2008, Carte géologique de la France, Feuille d'Arles-sur-Tech (1100): Orléans, France, Bureau de Recherches Géologiques et Minières, scale 1:50000, 1 sheet, 44 p.Google Scholar
Bengtson, S., 1983, The early history of the Conodonta: Fossils and Strata, v. 15, p. 519.Google Scholar
Bengtson, S., and Collins, D., 2015, Chancelloriids of the Cambrian Burgess Shale: Palaeontologia Electronica, v. 18, p. 167, https://doi.org/10.26879/498.Google Scholar
Bengtson, S., and Fletcher, T.P., 1983, The oldest sequence of skeletal fossils in the lower Cambrian of southeastern Newfoundland: Canadian Journal of Earth Sciences, v. 20, p. 525536.Google Scholar
Bengtson, S., Conway Morris, S., Cooper, B.J., Jell, P.A., and Runnegar, B.N., 1990, Early Cambrian fossils from south Australia: Memoirs of the Association of Australasian Palaeontologists, v. 9, p. 1364.Google Scholar
Berastegui Batalla, X., and Losantos Sistach, M., 1997, Mapa geologic de Catalunya, Figueres 258-1-1(77-21): Servei Geologic de Catalunya, Institut Cartografic de Catalunya, España, scale 1:25000, 1 sheet.Google Scholar
Billings, E., 1871, On some new species of Palaeozoic fossils: Canadian Naturalist, v. 6, p. 213223, 240.Google Scholar
Brasier, M.D., 1986, The succession of small shelly fossils (especially conoidal microfossils) from English Precambrian-Cambrian boundary beds: Geological Magazine, v. 123, p. 237256.Google Scholar
Brasier, M.D., 1989, Towards a biostratigraphy of the earliest skeletal biotas, in Cowie, J.W., and Brasier, M.D., eds., The Precambrian-Cambrian Boundary, Oxford Monographs on Geology and Geophysics 12: Oxford, UK, Clarendon Press, p. 117165.Google Scholar
Brasier, M.D., Anderson, M.M., and Corfield, R.M., 1992, Oxygen and carbon isotope stratigraphy of early Cambrian carbonates in southeastern Newfoundland and England: Geological Magazine, v. 129, p. 265279.CrossRefGoogle Scholar
Brasier, M.D., Shields, G., Kuleshov, V.N., and Zhegallo, E.A., 1996, Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia: Geological Magazine, v. 133, p. 445-485.Google Scholar
Caron, J.-B., Smith, M.R., and Harvey, T.H.P., 2013, Beyond the Burgess Shale: Cambrian microfossils track the rise and fall of hallucigeniid lobopodians: Proceedings of the Royal Society B, v. 280, p. 20131613, https://doi.org/10.1098/rspb.2013.1613.Google ScholarPubMed
Casas, J.M., and Palacios, T., 2012, First biostratigraphical constraints on the pre-Upper Ordovician sequences of the Pyrenees based on organic-walled microfossils: Comptes Rendus Géosciences, v. 344, p. 5056, https://doi.org/10.1016/j.crte.2011.12.003.Google Scholar
Casas, J.M., Álvaro, J.J., Clausen, S., Padel, M., Puddu, C., Sanz-López, J., Sánchez-García, T., Navidad, M., Castiñeiras, P., and Liesa, M., 2019, Palaeozoic basement of the Pyrenees, in Quesada, C., and Oliveira, J.T., eds., The Geology of Iberia: A Geodynamic Approach: Regional Geology Reviews 2: Cham, Switzerland, Springer Nature, p. 229259, https://doi.org/10.1007/978-3-030-10519-8_8.Google Scholar
Cavet, P., 1957, Le Paléozoïque de la zone axiale des Pyrénées orientales françaises entre le Roussillon et l'Andorre: Bulletin du Service de la Carte Géologique de France, v. 55, p. 303518.Google Scholar
Clausen, S., Álvaro, J.J., Devaere, L., Ahlberg, P., and Babcock, L.E., 2015, The Cambrian explosion: Its timing and stratigraphic setting: Annales de Paléontologie, v. 101, p. 153160, https://doi.org/10.1016/j.annpal.2015.07.001.Google Scholar
Cobbold, E.S., 1921, The Cambrian horizons of Comley and their Brachiopoda, Pteropoda, Gastropoda, etc.: Quarterly Journal of the Geographical Society of London, v. 76, p. 325386.Google Scholar
Cochelin, B., Chardon, D., Denèle, Y., Gumiaux, C., and Le Bayon, B., 2017, Vertical strain partitioning in hot Variscan crust: Syn-convergence escape of the Pyrenees in the Iberian-Armorican syntax: Bulletin de la Société Géologique de France, v. 188, p. 39, https://doi.org/10.1051/bsgf/2017206.Google Scholar
Cochelin, B., Lemirre, B., Denèle, Y., De Saint Blanquat, M., Lahfid, A., and Duchêne, S., 2018, Structural inheritance in the Central Pyrenees: The Variscan to Alpine tectonometamorphic evolution of the Axial Zone: Journal of the Geological Society, v. 175, p. 336351, https://doi.org/10.1144/jgs2017-066.Google Scholar
Cuvier, G., 1797, Tableau Élémentaire de l'Histoire Naturelle des Animaux: Paris, Baudouin, 710 p.Google Scholar
Debrenne, F., Gandin, A., Courjault-Radé, P., 2002, Facies and depositional setting of the lower Cambrian archaeocyath-bearing limestones of southern Montagne Noire (Massif Central, France): Bulletin de la Société Géologique de France, v. 173, p. 533546, https://doi.org/10.2113/173.6.533.Google Scholar
Denèle, Y., Laumonier, B., Paquette, J.-L., Olivier, P., Gleizes, G., and Barbey, P., 2014, Timing of granite emplacement, crustal flow and gneiss dome formation in the Variscan segment of the Pyrenees: Geological Society Special Publications, v. 405, p. 265287, https://doi.org/10.1144/SP405.5.Google Scholar
Devaere, L., Clausen, S., Steiner, M., Álvaro, J.J., and Vachard, D., 2013, Chronostratigraphic and palaeogeographic significance of an early Cambrian microfauna from the Heraultia Limestone, northern Montagne Noire, France: Palaeontologia Electronica, v. 16, p. 17A91, https://doi.org/10.26879/366.Google Scholar
Devaere, L., Clausen, S., Monceret, E., Tormo, N., Cohen, H., and Vachard, D., 2014a, Lapworthellids and other skeletonised microfossils from the Cambrian Stage 3 of the northern Montagne Noire, southern France: Annales de Paléontologie, v. 100, p. 175191, https://doi.org/10.1016/j.annpal.2014.01.001.Google Scholar
Devaere, L., Clausen, S., Monceret, E., Vizcaïno, D., Vachard, D., and Genge, M.C., 2014b, The tommotiid Kelanella and associated fauna from the early Cambrian of southern Montagne Noire (France): Implications for camenellan phylogeny: Palaeontology, v. 57, p. 9791002, https://doi.org/10.1111/pala.12098.Google Scholar
Devaere, L., Clausen, S., Sosa-León, J.P., Palafox-Reyes, J.J., Buitrón-Sánchez, B.E., and Vachard, D., 2019, Early Cambrian small shelly fossils from northwest Mexico: Biostratigraphic implications for Laurentia: Palaeontologia Electronica, v. 22.2.41A, p. 160, https://doi.org/10.26879/880.Google Scholar
Doré, F., and Reid, R.E., 1965, Allonia tripodophora nov. gen., nov. sp., nouvelle éponge du Cambrien inférieur de Carteret (Manche): Compte Rendu Sommaire des Séances de la Société Géologique de France, v. 1965, no. 1, p. 2021.Google Scholar
Duan, C., 1984, [Small shelly fossils from the Lower Cambrian Xihaoping Formation in the Shennongjia District, Hubei Province—Hyoliths and fossil skeletons of unknown affinities]: Bulletin of the Tianjin Institute of Geology and Mineral Resources, v. 7, p. 143188. [in Chinese with an English abstract]Google Scholar
Duméril, A.M.C., 1806, Zoologie Analytique ou Méthode Naturelle de Classification des Animaux: Paris, Allais, 344 p.Google Scholar
Dzik, J., 2003, Early Cambrian lobopodian sclerites and associated fossils from Kazakhstan: Palaeontology, v. 46, p. 93112, https://doi.org/10.1111/1475-4983.00289.CrossRefGoogle Scholar
Elicki, O., 1994, Lower Cambrian carbonates from eastern Germany: Palaeontology, stratigraphy and palaeogeography: Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, v. 191, p. 6993.Google Scholar
Elicki, O., 2005, The utility of late early to middle Cambrian small shelly fossils from the western Mediterranean: Geosciences Journal, v. 9, p. 161171, https://doi.org/10.1007/BF02910577.Google Scholar
Elicki, O., and Schneider, J., 1992, Lower Cambrian (Atdabanian/Botomian) Shallow-Marine carbonates of the Görlitz Synclinorium (Saxony/Germany): Facies, v. 26, p. 55–66.CrossRefGoogle Scholar
Elicki, O., and Wotte, T., 2003, Cambroclaves from the Cambrian of Sardinia (Italy) and Germany: Constraints for the architecture of western Gondwana and the palaeogeographical and palaeoecological potential of cambroclaves: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 195, p. 5571, https://doi.org/10.1016/S0031-0182(03)00302-X.Google Scholar
Esakova, N.V., and Zhegallo, E.A., 1996, [Biostratigraphy and fauna of the lower Cambrian of Mongolia]: Trudy Sovmestnoj Rossijsko-Mongol'skoj Paleontologičeskoj Ekspedicii, v. 46, p. 1216. [in Russian]Google Scholar
Fisher, D.W., 1962, Other small conoidal shells, in Moore, R.C., ed., Treatise on Invertebrate Paleontology, Part W, Miscellanea: Boulder, Colorado, and Lawrence, Kansas, Geological Society of America (and University of Kansas Press), p. W98W143.Google Scholar
Fleming, P.J., 1973, Bradoriids from the Xystridura Zone of the Georgina Basin, Queensland: Publications of the Queensland Geological Survey 356: Professional Papers, v. 31, p. 19.Google Scholar
Gorjansky, V.Y., and Popov, L.E., 1985, [The morphology, systematic position, and origin of inarticulate brachiopods with carbonate shells]: Paleontologicheskii Zhurnal, v. 3, p. 313. [in Russian]Google Scholar
Gravestock, D.I., Alexander, E.M., Demidenko, Yu.E., Esakova, N.V., Holmer, L.E., Jago, J.B., Lin, T., Melnikova, L.M., Parkhaev, P. Yu, ., Rozanov, A. Yu, ., Ushatinskaya, G.T., Zang, W., Zhegallo, E.A., and Zhuravlev, A. Yu, ., 2001, The Cambrian biostratigraphy of the Stansbury Basin, South Australia: Transactions of the Palaeontological Institute, v. 282, p. 1344.Google Scholar
Hall, J., 1847, Palaeontology of New York, Volume 1, Containing Descriptions of the Organic Remains of the Lower Division of the New-York System: Albany, Geological Survey of the State of New York, 338 p.Google Scholar
Hinz, I., 1987, The lower Cambrian microfauna of Comley and Rushton, Shropshire/England: Palaeontographica, v. 198A, p. 41100.Google Scholar
Hinz, I., 1992, On Motlasrerium oepiki Fleming: Stereo-Atlas of Ostracod Shells, v. 19, p. 123130.Google Scholar
Hinz-Schallreuter, I., and Jones, P.J., 1994, Gladioscutum lauriei Hinz & Jones gen. et sp. nov. (Archaeocopida) from the middle Cambrian of the Georgina Basin, central Australia: Paläontologische Zeitschrift, v. 68, p. 361375.Google Scholar
Hinz-Schallreuter, I., Gozalo, R., and Liñán, E., 2007, New bradoriid arthropods from the lower Cambrian of Spain: Micropaleontology, v. 53, p. 497510, https://doi.org/10.2113/gsmicropal.53.6.497.Google Scholar
Holm, G., 1893, Sveriges kambrisk-siluriska Hyolithidae och Conulariidae: Sveriges Geologiska Undersökning, Afhandlingar och Uppsatser, v. C 112, p. 1172.Google Scholar
Holmer, L.E., Popov, L.E., and Wrona, R., 1996, Early Cambrian lingulate brachiopods from glacial erratic of King George Island (South Shetland Islands), Antarctica, in Gazdzicki, A., ed., Palaeontological Results of the Polish Antarctic Expeditions, Part II: Palaeontologia Polonica, v. 55, p. 37–50.Google Scholar
Huo, S.-C., and Shu, D.-G., 1985, [Cambrian Bradoriida of South China]: Xi'an, China, Northwest University Press, 251 p. [in Chinese]Google Scholar
Hou, X.-G., Siveter, D.J., Williams, M., and Xiang-Hong, F., 2001, A monograph of the bradoriid arthropods from the lower Cambrian of SW China: Transactions of the Royal Society of Edinburgh Earth Sciences, v. 92, p. 347409, https://doi.org/10.1017/S0263593300000286.Google Scholar
Knight, J.B., 1956, New families of gastropods: Journal of the Washington Academy of Sciences, v. 46, p. 241242.Google Scholar
Korovnikov, I.K., and Novozhilova, N.V., 2012, New biostratigraphical constraints on the lower and lower middle Cambrian of the Kharaulakh Mountains (northeastern Siberian Platform, Chekurovka anticline): Russian Geology and Geophysics, v. 53, p. 776786, https://doi.org/10.1016/j.rgg.2012.06.005.Google Scholar
Kouchinsky, A., Bengtson, S., Clausen, S., Gubanov, A., Malinky, J.M., and Peel, J.S., 2011, A middle Cambrian fauna of skeletal fossils from the Kuonamka Formation, northern Siberia: Alcheringa, v. 35, p. 123189, https://doi.org/10.1080/03115518.2010.496529.CrossRefGoogle Scholar
Kouchinsky, A., Bengtson, S., Clausen, S., and Vendrasco, M.J., 2015, An early Cambrian fauna of skeletal fossils from the Emyaksin Formation, northern Siberia: Acta Palaeontologica Polonica, v. 60, p. 421512, https://doi.org/10.4202/app.2012.0004.Google Scholar
Landing, E., 1988, Lower Cambrian of eastern Massachusetts: Stratigraphy and small shelly fossils: Journal of Paleontology, v. 62, p. 661695.Google Scholar
Landing, E., 1995, Upper Placentian–Branchian Series of mainland Nova Scotia (middle–upper lower Cambrian): Faunas, paleoenvironments, and stratigraphic revision: Journal of Paleontology, v. 69, p. 475495.Google Scholar
Landing, E., Nowlan, G.S., and Fletcher, T.P., 1980, A microfauna associated with early Cambrian trilobites of the Callavia Zone, northern Antigonish Highlands, Nova Scotia: Canadian Journal of Earth Sciences, v. 17, p. 400418.Google Scholar
Laumonier, B., 2015, Les Pyrénées alpines sud-orientales (France, Espagne)—Essai de synthèse: Revue de Géologie Pyrénéenne, v. 2, p. 144.Google Scholar
Laumonier, B., Abad, A., Alonso, J.L., Baudelot, S., Bresiére, G., Besson, M., and Centéne, A., 1996, Cambro-Ordovicien, in Barnolas, A., Chiron, J. C., and Guérangé, B., eds., Synthèse Géologique et Géophysique des Pyrénées, Volume 1: Introduction, Géophysique, Cycle Hercynien: Madrid, Bureau de Recherches Géologiques et Minières, Orléans-Instituto Tecnológico Geominero de España, p. 157209.Google Scholar
Laumonier, B., 1998, Les Pyrénées centrales et orientales au début du Paléozoïque (Cambrien sl): Évolution paléogéographique et géodynamique: Geodinamica Acta, v. 11, p. 111.Google Scholar
Laumonier, B., Autran, A., Barbey, P., Cheilletz, A., Baudin, T., Cocherie, A., and Guerrot, C., 2004, Conséquences de l'absence de socle cadomien sur l’âge et la signification des séries pré-varisques (anté-Ordovicien supérieur) du sud de la France (Pyrénées, Montagne Noire): Bulletin de la Société Géologique de France, v. 175, p. 643656.Google Scholar
Laumonier, B., Marignac, C., and Kister, P., 2010, Polymétamorphisme et évolution crustale dans les Pyrénées orientales pendant l'orogenèse varisque au Carbonifère supérieur: Bulletin de la Société Géologique de France, v. 181, p. 411428.Google Scholar
Laumonier, B., Calvet, M., Wiazemsky, M., Barbey, P., Marignac, C., Lambert, J., Lenoble, J.L., 2015, Carte géologique de la France, Feuille de Céret (1096): Orléans, France, Bureau de Recherches Géologiques et Minières, scale 1:50000, 1 sheet, 164 p.Google Scholar
Lee, H.-Y., 1975, Conodonts from the upper Cambrian Formation, Kangweon-Do, South Korea and its stratigraphical significance: Seoul, Korea, Yonsei University, v. 12, p. 7189.Google Scholar
Lemirre, B., Cochelin, B., Duchene, S., de Saint Blanquat, M., and Poujol, M., 2019, Origin and duration of late orogenic magmatism in the foreland of the Variscan belt (Lesponne-Chiroulet-Neouvielle area, French Pyrenees): Lithos, v. 336–337, p. 183201, https://doi.org/10.1016/j.lithos.2019.03.037.Google Scholar
Li, G., and Holmer, L.E., 2004, Early Cambrian lingulate brachiopods from the Shaanxi Province, China: GFF, v. 126, p. 193211, https://doi.org/10.1080/11035890401262193.Google Scholar
Li, G., and Xiao, S., 2004, Tannuolina and Micrina (Tannuolinidae) from the lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction: Journal of Paleontology, v. 78, p. 900913.Google Scholar
Li, G., Zhu, M., Steiner, M., and Qian, Y., 2004, Skeletal faunas from the Qiongzhusian of southern Shaanxi: Biodiversity and lithofacies-biofacies links in the lower Cambrian carbonate settings: Progress in Natural Sciences, v. 14, p. 9196.Google Scholar
Li, G., Steiner, M., Zhu, M., and Zhao, X., 2012, Early Cambrian eodiscoid trilobite Hupeidiscus orientalis from South China: Ontogeny and implications for affinities of Mongolitubulus-like sclerites: Bulletin of Geosciences, v. 87, p. 159169, https://doi.org/10.3140/bull.geosci.1224.Google Scholar
Linnarsson, J.G.O., 1871, Om några försteningar från Sveriges och Norges ‘Primordialzon’: Öfversikt af Kongliga Vetenskaps-Akademiens Förhandlingar, v. 6, p. 789796.Google Scholar
Luo, H., Jiang, Z., Wu, X., Song, X., and Ouyang, L., 1982, [The Sinian-Cambrian boundary in eastern Yunnan, China]: Kunming, China, People's Republic of China, 265 p. [in Chinese with English summary]Google Scholar
Mackinnon, D.I., 1985, New Zealand late middle Cambrian molluscs and the origin of Rostroconchia and Bivalvia: Alcheringa, v. 9, p. 6581.Google Scholar
Malinky, J., and Skovsted, C.B., 2004, Hyoliths and small shelly fossils from the lower Cambrian of North-East Greenland: Acta Palaeontologica Polonica, v. 49, p. 551578.Google Scholar
Malinky, J.M., Wilson, M.A., Holmer, L.E. and Lardeux, H., 2004, Tube-shaped incertae sedis, in Webby, B.D., Paris, F., Droser, M.L., and Percival, I.G., eds., The Great Ordovician Biodiversification Event: New York, Columbia University Press, p. 214222.Google Scholar
Mambetov, A.M., 1972, [A new genus of hyoliths from the lower Cambrian of Lesser Karatau (northwestern Tien-Shan)]: Paleontologičeskij Žurnal, v. 1972, no. 2, p. 140142. [in Russian]Google Scholar
Marek, L., 1963, New knowledge on the morphology of Hyolithes: Sborník Geologických Věd, Řada Paleontologie, v. 1, p. 5372.Google Scholar
Martínez Catalán, J.R., Pérez-Estaùn, A., and Bastida, F., 1988, The structure of the upper crust in the Hercynian Belt of NW Spain, in Banda, E., and Mendes Victor, L.A., eds., Proceedings, Workshop on the European Geotraverse (EGT), 5th, The Iberian Peninsula: Strasbourg, France, European Science Foundation, p. 4755.Google Scholar
Martínez Catalán, J.R., Arenas, R., Díaz García, F., and Abati, J., 1997, Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events: Geology, v. 25, p. 11031106.Google Scholar
Martínez Catalán, J.R., Arenas, R., Díaz García, F., González Cuadra, P., Gómez-Barreiro, J., Abati, J., Castiñeiras, P., Fernández-Suárez, J., Sánchez Martínez, S., Andonaegui, P., González Clavijo, E., Díez Montes, A., Rubio Pascual, F.J., and Valle Aguado, B., 2007, Space and time in the tectonic evolution of the northwestern Iberian Massif: Implications for the Variscan belt, in Hatcher, R.D. Jr., Carlson, M.P., McBride, J.H., and Martínez Catalán, J.R., eds., 4-D Framework of Continental Crust: Geological Society of America Memoir 200, p. 403423, https://doi.org/10.1130/2007.1200(21).Google Scholar
Matthew, G.F., 1894, Illustrations of the fauna of the St. John Group: Transactions of the Royal Society of Canada, v. 11, p. 85129.Google Scholar
Matthew, G.F., 1895, The Protolenus fauna: Transactions of the New York Academy of Sciences, v. 14, p. 101153.Google Scholar
Matthew, G.F., 1902, Notes on Cambrian faunas: Transactions of the Royal Society of Canada, ser. 2, sect. 4, v. 18, p. 93112.Google Scholar
Menéndez, S., Perejón, A., and Moreno-Eiris, E., 2015, Late Ovetian (Cambrian Series 2, Stage 3) archaeocyathan biostratigraphy of Spain: Annales de Paléontologie, v. 101, p. 161166, https://doi.org/10.1016/j.annpal.2015.04.001.Google Scholar
Menke, C.T., 1828, Synopsis methodica molluscorum generum omnium et specierum earum, quae in Museo Menkeano adservantur; cum synonymia critica et novarum specierum diagnosibus: Pyrmonti, Henrici Gelpke, 91 p., https://doi.org/10.5962/bhl.title.16049.CrossRefGoogle Scholar
Missarzhevsky, V.V., 1970, [New generic name Tommotia, nom. nov.]: Paleontologičeskij Žhurnal, v. 1970, no. 2, p. 100. [in Russian]Google Scholar
Missarzhevsky, V.V., 1977, [Conodonts (?) and phosphatic problematica from the Cambrian of Mongolia and Siberia], in Tatarinov, L.P., ed., Bespozvonočnye Paleozoâ Mongolii: Moscow, Nauka, p. 1019. [in Russian]Google Scholar
Missarzhevsky, V.V., and Grigorieva, N.V., 1981, New representatives of the order Tommotiida: Paleontological Journal, v. 15, p. 96103. [in Russian]Google Scholar
Missarzhevsky, V.V., and Mambetov, A.M., 1981, [Stratigraphy and fauna of the Cambrian and Precambrian boundary beds of the Lesser Karatau Range]: Trudy Geologičeskogo Instituta AN SSSR, v. 326, p. 192. [in Russian]Google Scholar
Moore, J.L., Li, G., and Porter, S.M., 2014, Chancelloriid sclerites from the lower Cambrian (Meishucunian) of eastern Yunnan, China, and the early history of the group: Palaeontology, v. 57, p. 833878, https://10.1111/pala.12090.Google Scholar
Moore, J.L., Porter, S.M., Webster, M., and Maloof, A.C., 2021, Chancelloriid sclerites from the Dyeran-Delamaran (‘lower–middle’ Cambrian) boundary interval of the Pioche-Caliente region, Nevada, USA: Papers in Palaeontology, v. 7, p. 565623, https://doi.org/10.1002/spp2.1274.Google Scholar
Murphy, J.B., Pisarevsky, S.A., Nance, R.D., and Keppie, J.D., 2004, Neoproterozoic early Paleozoic evolution of peri-Gondwanan terranes: Implications for Laurentia-Gondwana connections: International Journal of Earth Sciences, v. 93, p. 659682, https://doi.org/10.1007/s00531-004-0412-9.Google Scholar
Nance, R.D., Murphy, J.B., Strachan, R.A., Keppie, J.D., Gutiérrez-Alonso, G., Fernández-Suárez, J., Quesada, C., Linnemann, U., d'Lemos, R., and Pisarevsky, S.A., 2008, Neoproterozoic-early Palaeozoic tectonostratigraphy and palaeogeography of the peri-Gondwanan terranes: Amazonian v. West African connections: Geological Society, London, Special Publications, v. 297, p. 345383, https://doi.org/10.1144/SP297.17.Google Scholar
Neckaya, A.I., and Ivanova, V.A., 1956, Pervaya nachodka ostrakod v nizhnem kembrii Vostochnoj Sibiri: Doklady Akademii Nauk SSSR, v. 111, p. 10951097.Google Scholar
Olivier, P., Gleizes, G., Paquette, J.L., and Munoz-Saez, C., 2008, Structure and U-Pb dating of the Saint-Arnac pluton and the Ansignan charnockite (Agly Massif): A cross-section from the upper to the middle crust of the Variscan eastern Pyrenees: Journal of the Geological Society, London, v. 165, p. 41152, https://doi.org/10.1144/0016-76492006-185.Google Scholar
Padel, M., Álvaro, J.J., Clausen, S., Guillot, F., Poujol, M., Chichorro, M., Monceret, E., Pereira, M.F., and Vizcaïno, D., 2017, U-Pb laser ablation ICP-MS zircon dating across the Ediacaran–Cambrian transition of the Montagne Noire, southern France: Comptes Rendus Geoscience, v. 349, p. 380390, https://doi.org/10.1016/j.crte.2016.11.002.Google Scholar
Padel, M., Álvaro, J.J., Casas, J.M., Clausen, S., Poujol, M., and Sánchez-García, T., 2018a, Cadomian volcanosedimentary complexes across the Ediacaran-Cambrian transition of the eastern Pyrenees, southwestern Europe: International Journal of Earth Sciences, v. 107, p. 15791601, https://doi.org/10.1007/s00531-017-1559-5.Google Scholar
Padel, M., Clausen, S., Álvaro, J.J., and Casas, J.M., 2018b, Review of the Ediacaran–Lower Ordovician (pre-Sardic) stratigraphic framework of the eastern Pyrenees, southwestern Europe: Geologica Acta, v. 16, p. 339355, https://doi.org/10.1344/GeologicaActa2018.16.4.1.Google Scholar
Parkhaev, P.Y., 2004, Malacofauna of the lower Cambrian Bystraya Formation of eastern Transbaikalia: Paleontological Journal, v. 38, p. 590608.Google Scholar
Parkhaev, P.Yu., and Demidenko, Yu.E., 2010, Zooproblematica and Mollusca from the lower Cambrian Meishucun section (Yunnan, China) and taxonomy and systematics of the Cambrian small shelly fossils of China: Paleontological Journal, v. 44, p. 8831161, https://doi.org/10.1134/S0031030110080010.Google Scholar
Paterson, J.R., Skovsted, C.B., Brock, G.A. and Jago, J.B., 2007, An early Cambrian faunule from the Koolywurtie Limestone Member (Parara Limestone), Yorke Peninsula, South Australia and its biostratigraphic significance: Memoirs of the Association of Australasian Palaeontologists, v. 34, p. 131146.Google Scholar
Peel, J.S., Skovsted, C.B., and Wallet, E., 2021, Morphology and ecology of the bradoriid arthropods Spinospitella and Nikolarites from the Cambrian (Series 2, Stage 4) of North Greenland (Laurentia): PalZ, v. 95, p. 413427, https://doi.org/10.1007/s12542-021-00569-4.Google Scholar
Pelman, Yu.L., and Pereladov, V.S., 1986, Stratigraphy and brachiopods of the Lower–Middle Cambrian on the Arga-Sala River (southern Anabar region), in Zhuravleva, I.T., ed., Biostratigraphy and Paleontology of the Cambrian of Northern Asia: Trudy Instituta Geologii i Geofiziki Sibirskoe Otdelenie, Akademiya Nauk SSSR, vol. 669, p. 119154.Google Scholar
Peng, S.C., Babcock, L.E., and Cooper, R.A., 2012, The Cambrian Period, in Gradstein, F.M., Ogg, J.G., Schmitz, M.D., and Ogg, G.M., eds., The Geologic Time Scale 2012, Volume 2: Amsterdam, Elsevier BV, p. 437488.Google Scholar
Pereira, M.F., Castro, A., Chichorro, M., Fernández, C., Díaz-Alvarado, J., Martí, J., and Rodríguez, C., 2014, Chronological link between deep-seated processes in magma chambers and eruptions: Permo-Carboniferous magmatism in the core of Pangaea (southern Pyrenees): Gondwana Research, v. 25, p. 290308, https://doi.org/10.1016/j.gr.2013.03.009.Google Scholar
Perejón, A., Moreno-Eiris, E., and Abad, A., 1994, Montículos de arqueociatos y calcimicrobios del Cámbrico inferior de Terrades, Gerona (Pirineo oriental): Boletín de la Real Sociedad Española de Historia Natural, Sección Geológica, v. 89, p. 5595.Google Scholar
Porter, S.M., 2008, Skeletal microstructure indicates chancelloriids and halkieriids are closely related: Palaeontology, v. 51, p. 865879, https://doi.org/10.1111/j.1475-4983.2008.00792.x.CrossRefGoogle Scholar
Pouclet, A., Álvaro, J.J., Bardintzeff, J.M., Imaz, A.G., Monceret, E., and Vizcaïno, D., 2016, Cambrian–Early Ordovician volcanism across the South Armorican and Occitan Domains of the Variscan Belt in France: Continental break-up and rifting of the northern Gondwana margin: Geoscience Frontiers, v. 8, p. 2564, https://doi.org/10.1016/j.gsf.2016.03.002.Google Scholar
Poulsen, C., 1932, The Lower Cambrian faunas of East Greenland: Meddelelser om Grønland, v. 87, p. 166.Google Scholar
Pujadas, J., Casas, J.M., Muñoz, J.A., and Sabat, F., 1989, Thrust tectonics and Paleogene syntectonic sedimentation in the Empordà area, southeastern Pyrenees: Geodinamica Acta, v. 3, p. 195206.Google Scholar
Qian, Y., 1977, Hyolitha and some Problematica from the lower Cambrian Meishucun Stage in central and SW China: Acta Palaeontologica Sinica, v. 16, p. 255278. (in Chinese)Google Scholar
Qian, Y., 1989, Early Cambrian Small Shelly Fossils of China with Special Reference to the Precambrian-Cambrian Boundary: Stratigraphy and Palaeontology of Systemic Boundaries in China, Precambrian-Cambrian Boundary Volume 2: Nanjing, China, Nanjing University Publishing House, 342 p.Google Scholar
Qian, Y., and Bengtson, S., 1989, Palaeontology and biostratigraphy of the early Cambrian Meishucunian Stage in Yunnan Province, South China: Fossils and Strata, v. 24, p. 1156.Google Scholar
Qian, Y., and Zhang, S., 1983, [Small shelly fossils from the Xihaoping Member of the Tongying Formation in Fangxian County of Hubei Province and their stratigraphical significance]: Acta Palaeontologica Sinica, v. 22, p. 8294. [in Chinese]Google Scholar
Raymond, P.E., 1935, Leanchoilia and other mid-Cambrian Arthropoda: Bulletin of the Museum of Comparative Zoology, v. 76, p. 205230.Google Scholar
Romero, P., and Schimmel, M., 2018, Mapping the basement of the Ebro Basin in Spain with seismic ambient noise autocorrelations: Journal of Geophysical Research: Solid Earth, v. 123, p. 50525067, https://doi.org/10.1029/2018JB015498.Google Scholar
Rozanov, A.Yu., and Missarzhevskiy [Missarzhevsky], V.V., 1966, [Biostratigraphy and fauna of the lower horizons of the Cambrian]: Trudy Geologicheskogo Instituta AN SSSR, v. 148, p. 1125. [in Russian]Google Scholar
Rozanov, A.Y., Parkhaev, P.Y., Demidenko, Y.E., Karlova, G.A., Korovnikov, I.V., Shabanov, Y.Y., Ivancov, A.Y., Luchinina, V.A., Malakhovskaya, A.E., Melnikova, L.M., Naimark, E.B., Ponomarenko, A.G., Skorlotova, N.A., Sundukov, V.M., Tokarev, D.A., Ushatinskaya, G.T., and Kipriyanova, L.D., 2010, Fossils from the Lower Cambrian Stage Stratotypes: Moscow, PIN RAN, 225 p.Google Scholar
Sdzuy, K., 1969, Unter- und mittelkambrische Porifera (Chancelloriida und Hexactinellida): Paläontologische Zeitschrift, v. 43, p. 115147.Google Scholar
Siebold, C.T.E., and Stannius, H., 1845, Lehrbuch der Vergleichenden Anatomie: Berlin, Veit & Comp., 679 p.Google Scholar
Siveter, D.J., and Williams, M., 1997, Cambrian bradoriid and phosphatocopid arthropods of North America: Special Papers in Palaeontology, v. 57, 169.Google Scholar
Siveter, D.J., Williams, M., Peel, J.S., and Siveter, D.J., 1996, Bradoriida (Arthropoda) from the early Cambrian of North Greenland: Transactions of the Royal Society of Edinburgh: Earth Sciences, v. 86, p. 113121.Google Scholar
Skovsted, C.B., 2004, Mollusc fauna of the early Cambrian Bastion Formation of north-east Greenland: Bulletin of the Geological society of Denmark, v. 51, p. 1137, https://doi.org/10.37570/bgsd-2004-51-02.Google Scholar
Skovsted, C.B., 2005, A carapace of the bradoriid arthropod Mongolitubulus from the early Cambrian of Greenland: GFF, v. 127, p. 217220, https://doi.org/10.1080/11035890501273217.Google Scholar
Skovsted, C.B., and Peel, J.S., 2001, The problematic fossil Mongolitubulus from the lower Cambrian of Greenland: Bulletin of the Geological Society of Denmark, v. 48, p. 135147.CrossRefGoogle Scholar
Skovsted, C.B., Brock, G.A., and Paterson, J.R., 2006, Bivalved arthropods from the lower Cambrian Mernmerna Formation, Arrowie Basin, South Australia and their implications for the identification of Cambrian ‘small shelly fossils’: Memoirs of the Association of Australasian Palaeontologists, v. 32, p. 741.Google Scholar
Steiner, M., Li, G., Qian, Y., Zhu, M., and Erdtmann, B.D., 2007, Neoproterozoic to early Cambrian small shelly fossil assemblages and a revised biostratigraphic correlation of the Yangtze Platform (China): Palaeogeography, Palaeoclimatology, Palaeoecology, v. 254, p. 6799, https://doi.org/10.1016/j.palaeo.2007.03.046.Google Scholar
Sysoev, V.A., 1957, [On the morphology, systematics and affinity of hyoliths]: Doklady Akademii Nauk SSSR, v. 116, p. 304307. [in Russian]Google Scholar
Tan, G., 1980, [Crustacea], in Yin, J., Ding, L., He, T., Li, S., and Shen, L., eds., Stratigraphy, Palaeontology and Sedimentary Environment of Sinian in Ganlo Region, Chengdu, China: Chengdu [Sichuan], China, People's Publishing House, p. 189–90. [in Chinese]Google Scholar
Tate, R., 1892, The Cambrian fossils of South Australia: Transactions of the Royal Society of South Australia, v. 15, p. 183189.Google Scholar
Topper, T.P., Skovsted, C.B., Brock, G.A., and Paterson, J.R., 2007, New bradoriids from the lower Cambrian Mernmerna Formation, South Australia: Systematics, biostratigraphy and biogeography: Memoirs of the Association of Australasian Palaeontologists, v. 33, p. 67100.Google Scholar
Topper, T.P., Brock, G.A., Skovsted, C.B., and Paterson, J.R., 2009, Shelly fossils from the lower Cambrian ‘Pararaia bunyerooensis’ Zone, Flinders Ranges, South Australia: Australasian Palaeontological Memoirs, v. 37, p. 199246.Google Scholar
Topper, T.P., Skovsted, C.B., Harper, D.A., and Ahlberg, P., 2013, A bradoriid and brachiopod dominated shelly fauna from the Furongian (Cambrian) of Västergötland, Sweden: Journal of Paleontology, v. 87, p. 6983, https://doi.org/10.1666/12-047R.1.Google Scholar
Vannier, J., Williams, M., Álvaro, J.J., Vizcaïno, D., Monceret, S., and Monceret, E., 2005, New early Cambrian bivalved arthropods from southern France: Geological Magazine, v. 142, p. 751763, https://doi.org/10.1017/S0016756805001093.CrossRefGoogle Scholar
Vasilieva, N.I., 1998, Melkaâ Rakovinnaâ Fauna i Biostratigrafiâ Nižnego Kembriâ Sibirskoj Platformy: St. Petersburg, VNIGRI, 139 p.Google Scholar
Waagen, W., 1885, Salt Range fossils, Volume 1, Part 4: Productus limestone fossils, Brachiopoda: Memoirs of the Geological Survey of India, Palaeontologia India, v. 13, p. 729770.Google Scholar
Walcott, C.D., 1886, Second contribution to the studies on the Cambrian faunas of North America: Bulletin of the United States Geological Survey, v. 30, p. 1369.Google Scholar
Walcott, C.D., 1890, The fauna of the lower Cambrian or Olellenus Zone: Reports of the U.S. Geological Survey, v. 10, p. 509763.Google Scholar
Walcott, C.D., 1920, Cambrian geology and paleontology IV: 6—Middle Cambrian Spongiae: Smithsonian Miscellaneous Collections, v. 67, p. 261364.Google Scholar
Walliser, O.H. von, 1958, Rhombocorniculum compleyense n. gen., n. sp.: Paläontologische Zeitschrift, v. 32, p. 176180.Google Scholar
Williams, M., Siveter, D.J., Hinz-Schallreuter, I., and Melnikova, L., 1994, On Cambria sibirica Neckaja and Ivanova, in Athersuch, J., Horne, D.J., Lord, A.R., Siveter, D.J., and Whittaker, J.E., eds.,A Stereo-Atlas of Ostracod Shells Volume 21: London, British Micropalaeontological Society, p. 812.Google Scholar
Williams, A., Carlson, S.J., Brunton, C.H.C., Holmer, L.E., and Popov, L.E., 1996, A supra-ordinal classification of the Brachiopoda: Philosophical Transactions of the Royal Society, Biological Sciences, v. 351, p. 11171193.Google Scholar
Williams, M., Siveter, D.J., Popov, L.E., and Vannier, J.M., 2006, Biogeography and affinities of the bradoriid arthropods: Cosmopolitan microbenthos of the Cambrian seas: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 248, p. 202232, https://doi.org/10.1016/j.palaeo.2006.12.004.Google Scholar
Wrona, R., 1989, Cambrian limestone erratics in the Tertiary glacio-marine sediments of King George Island, west Antarctica: Polish Polar Research, v. 10, p. 533553.Google Scholar
Wrona, R., 2004, Cambrian microfossils from glacial erratics of King George Island, Antarctica: Acta Palaeontologica Polonica, v. 49, p. 1356.Google Scholar
Xing, Y.S., Ding, Q.X., Luo, H.L., He, T.G., and Wang, Y.G., 1984, [The Sinian-Cambrian boundary of China]: Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, v. 10, p. 1262. [in Chinese]Google Scholar
Yang, B., 2014, Cambrian small shelly fossils of South China and their application in biostratigraphy and palaeobiogeography [Ph.D. thesis]: Berlin, Freie Universität Berlin, 164 p.Google Scholar
Yang, B., Steiner, M., and Keupp, H., 2015, Early Cambrian palaeobiogeography of the Zhenba-Fangxian Block (South China): Independent terrane or part of the Yangtze Platform?: Gondwana Research, v. 28, p. 15431565, https://doi.org/10.1016/j.gr.2014.09.020.Google Scholar
Yuan, K.X., and Zhang, S.G., 1983, Discovery of the Tommotia fauna in SW China: Acta Palaeontologica Sinica, v. 22, p. 3141.Google Scholar
Yue, Z., and Gao, L., 1992, Paleontology, biostratigraphy and geological significance of the early Cambrian protoconodonts and other skeletal microfossils from Aksu-Wushi Region, Xinjiang, China: Bulletin of the Institute of Geology, Chinese Academy of Geological Sciences, v. 2, p. 133160.Google Scholar
Yun, H., Zhang, X., Li, L., Pan, B., Li, G., and Brock, G.A., 2019, Chancelloriid sclerites from the lowermost Cambrian of North China and discussion of sclerite taxonomy: Geobios, v. 53, p. 6575, https://doi.org/10.1016/j.geobios.2019.02.001.CrossRefGoogle Scholar
Zhang, X.G., 2007, Phosphatized bradoriids (Arthropoda) from the Cambrian of China: Palaeontographica Abteilung A, v. 281, p. 93173, https://doi.org/10.1127/pala/281/2007/93.CrossRefGoogle Scholar
Zhang, X.G., Dong, X.P., and Xiao, S., 2014, New bivalved arthropods from the Cambrian (Series 3, Drumian Stage) of western Hunan, South China: Acta Geologica Sinica, v. 88, p. 13881396, https://doi.org/10.1111/1755-6724.12306.CrossRefGoogle Scholar
Zhang, Z., Zhang, Z., Holmer, L.E., and Li, G., 2015, First report of linguloid brachiopods with soft parts from the lower Cambrian (Series 2, Stage 4) of the Three Gorges area, South China: Annales de Paléontologie, v. 101, p. 167177, https://doi.org/10.1016/j.annpal.2015.04.002.Google Scholar
Zhang, Z.F., Zhang, Z.L., Li, G.X., and Holmer, L.E., 2016, The Cambrian brachiopod fauna from the first-trilobite age Shuijingtuo Formation in the Three Gorges area of China: Palaeoworld, v. 25, p. 333355, https://doi.org/10.1016/j.palwor.2015.10.001.CrossRefGoogle Scholar
Zhang, Z.L., Ghobadi Pour, M., Popov, L.E., Holmer, L.E., Chen, F.Y., Chen, Y.L., Brock, G.A., and Zhang, Z.F., 2021, The oldest Cambrian trilobite-brachiopod association in South China: Gondwana Research, v. 89, p. 147167, https://doi.org/10.1016/j.gr.2020.08.009.CrossRefGoogle Scholar
Zhou, B.-H., and Xiao, L.-G., 1984, [Early Cambrian mono-placophorans and gastropods from Huainan and Huoqiucounties, Anhui Province]: Professional Papers of Stratigraphy & Palaeontology, v. 13, p. 125140. [in Chinese with English abstract]Google Scholar
Zhu, M., Van Iten, H., Cox, R.S., Zhao, Y., and Erdtmann, B.D., 2000, Occurrence of Byronia Matthew and Sphenothallus Hall in the lower Cambrian of China: Paläontologische Zeitschrift, v. 74, p. 227238, https://doi.org/10.1007/BF02988098.CrossRefGoogle Scholar