Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T15:21:08.722Z Has data issue: false hasContentIssue false

The Antillean Tertiary crinoid fauna

Published online by Cambridge University Press:  20 May 2016

Stephen K. Donovan
Affiliation:
1Department of Palaeontology, The Natural History Museum, Cromwell Road, London, SW7 5BD, England 2Department of Geology, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL
Corneos J. Veltkamp
Affiliation:
3School of Biological Sciences, Nicholson Building, University of Liverpool, P.O. Box 147, Liverpool, L69 3BX, England

Abstract

Fossil crinoids are described from the Lesser Antilles for the first time. Crinoids are now known to occur in the Miocene of Carriacou, the Grenadines (four species), and in the Eocene and Miocene of Barbados (three species). Taxa include: isocrinid sp. indet., hyocrinid sp. indet. (both Eocene); the isocrinids Neocrinus decorus (Wyville Thomson, 1864) and Isocrinus sp., the bourgueticrinid Democrinus? sp., and the comatulid Horaeometra sp. (all Miocene). Despite the preponderance of taxa in open nomenclature, these are among the very few records of fossil crinoids from the Antillean region. Faunas are dominated by the columnals of isocrinids; bourgueticrinid and millericrinid columnals, and comatulid centrodorsals, are very rare, despite comatulids being both the most diverse crinoids in the modern fauna and the only group that occurs in shallow-water environments. Post-Eocene crinoid faunas in the Antillean region include taxa that are similar, at least at the generic level, to those of the present day. Democrinus? sp. from Carriacou is the first pre-Quaternary bourgueticrinid from the Antilles. Horaeometra sp. is the first fossil comatulid from the Antilles to be classified to generic level.

The extant crinoid fauna of the tropical western Atlantic includes 23 genera/34 species of “stalkless” comatulid crinoids and eight genera/ten species of stalked crinoids. This is far greater than the known diversity of fossil crinoids from the Antillean region, which spans circa 120 Ma. The apparent rarity of fossil crinoids is probably part artefact, produced by collection bias, taphonomic effects, and the relative rarity of exposures of sedimentary units deposited in 150+ m, i.e., the environment of extant stalked crinoids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1836 (for 1835). Prodrome d'une Monographie des Radiaires ou Echinodermes. Mémoires de la Société des Sciences Naturelles de Neuchǎtel, 1:168199.Google Scholar
Améziane, N., Bourseau, J. P., Heinzeller, T., and Roux, M. 1999. Les genres Cyathidium and Holopus au sein des Cyrtocrinida (Crinoidea; Echinodermata). Journal of Natural History, 33:439470.CrossRefGoogle Scholar
Bengtson, P. 1988. Open nomenclature. Palaeontology, 31:223227.Google Scholar
Berry, C. T. 1935. A Pliocene ophiuran from Trinidad. Journal of Paleontology, 9:430433.Google Scholar
Blyth Cain, J. D. 1968. Aspects of the depositional environment and palaeoecology of crinoidal limestones. Scottish Journal of Geology, 4:191208.CrossRefGoogle Scholar
Bottjer, D. J., and Jablonski, D. 1989 (for 1988). Paleoenvironmental patterns in the evolution of post-Paleozoic benthic marine invertebrates. Palaios, 3:540560.CrossRefGoogle Scholar
Breimer, A. 1978. General morphology. Recent crinoids, p. T9T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Carpenter, P. H. 1884. Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–76. Pt. I. General morphology, with descriptions of the stalked crinoids. Reports of the Scientific Results of the Exploratory Voyage of H.M.S. Challenger, Zoology, 11:1442.Google Scholar
Carpenter, P. H. 1888. Report upon the Crinoidea collected during the voyage of H.M.S. Challenger during the years 1873–76. Pt. II. The Comatulae. Reports of the Scientific Results of the Exploratory Voyage of H.M.S. Challenger, Zoology, 26:1400.Google Scholar
Clark, A. H. 1908a. New genera of unstalked crinoids. Proceedings of the Biological Society of Washington, 21:125136.Google Scholar
Clark, A. H. 1908b. Notice on some crinoids in the collection of the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoology, Harvard, 51:233248.Google Scholar
Clark, A. H. 1909. Four new species of the genus Rhizocrinus . Proceedings of the United States National Museum, 36:673676.CrossRefGoogle Scholar
Clark, A. H. 1915. A monograph of the existing crinoids. The comatulids. Bulletin of the United States National Museum, 82(1/1):406 p.Google Scholar
Clark, A. H. 1918. The unstalked crinoids of the Siboga Expedition. Siboga Expedition, 42b:300 p.Google Scholar
Clark, A. H. 1931. A monograph of the existing crinoids. The comatulids. Superfamily Comasterida. Bulletin of the United States National Museum, 82(1/3):815 p.Google Scholar
Clark, A. H. 1947. A monograph of the existing crinoids. The comatulids. Superfamily Mariametrida (concluded—the family Colobometridae) and Superfamily Tropiometrida (except the families Thalassometridae and Charitometridae). Bulletin of the United States National Museum, 82(1/4b):473 p.Google Scholar
Clark, A. H. 1950. A monograph of the existing crinoids. The comatulids. Superfamily Tropimetrida (the families Thalassometridae and Charitometridae). Bulletin of the United States National Museum, 82(1/4c):383 p.Google Scholar
Clark, A. H., and Clark, A. M. 1967. A monograph of the existing crinoids. The comatulids. Suborders Oligophreata (concluded) and Macrophreata. Bulletin of the United States National Museum, 82(1/5):860 p.Google Scholar
Dixon, H. L., Donovan, S. K., and Veltkamp, C. J. 1994. Crinoid and ophiuroid ossicles from the Oligocene of Jamaica. Caribbean Journal of Science, 30:143145.Google Scholar
Döderlein, L. 1907. Die gestielten Crinoiden der Siboga-Expedition. Siboga Expeditie: Uitkomsten op Zoologisch, Botanisch, Oceanographisch en Geologisch Gebied verzameld in Nederlandsch Oost-Indië 1899–1900, 42a:54 p. 30:143145.Google Scholar
Döderlein, L. 1912. Die gestielten Crinoiden der Deutschen Tiefsee-Expedition. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899, 17(1):34 p.Google Scholar
Donovan, S. K. 1984. Stem morphology of the Recent crinoid Chladocrinus (Neocrinus) decorus . Palaeontology, 27:825841.Google Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: calcareous multielement skeletons in the marine environment, p. 241269. In Donovan, S. K. (ed.), The Processes of Fossilization. Belhaven Press, London.Google Scholar
Donovan, S. K. 1992. Scanning EM study of the living cyrtocrinid Holopus rangii (Echinodermata, Crinoidea) and implications for its functional morphology. Journal of Paleontology, 66:665675.CrossRefGoogle Scholar
Donovan, S. K. 1995. Isocrinid crinoids from the late Cenozoic of Jamaica. Atlantic Geology, 30:195203.Google Scholar
Donovan, S. K. 1997. Comparative morphology of the stems of the extant bathycrinid Democrinus Perrier and the Upper Palaeozoic platycrinitids (Echinodermata, Crinoidea). Bulletin of the Mizunami Fossil Museum, 23(for 1996):127Google Scholar
Donovan, S. K. 2001. Evolution of Caribbean echinoderms during the Cenozoic: moving towards a complete picture using all of the fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 166:177192.CrossRefGoogle Scholar
Donovan, S. K., and Harper, D. A. T. 1997. Crinoids and brachiopods in the Miocene of the Antillean region. Geological Society of America Abstracts with Programs, 29(6):A405.Google Scholar
Donovan, S. K., and Harper, D. A. T. 1999. A new paleobathymetric interpretation of the Middle Miocene Grand Bay Formation of Carriacou (Grenadines, Lesser Antilles). Ichnos, 6:283288.CrossRefGoogle Scholar
Donovan, S. K., and Harper, D. A. T. In press. Brachiopod/crinoid associations in the late Cenozoic of the Antillean region: palaeodepth and prospectus. In Brunton, C. H. C., Cocks, L. R. M., and Long, S. L. (eds.), Transactions of the Millennium Brachiopod Congress. Taylor and Francis, London.Google Scholar
Donovan, S. K., and Jackson, T. A. (eds.). 1994. Caribbean Geology: An Introduction. University of the West Indies Publishers’ Association, Kingston, 289 p.Google Scholar
Donovan, S. K., Milsom, C. V., and Veltkamp, C. J. 1996. Jamaican Cretaceous Crinoidea. Journal of Paleontology, 70:866871.CrossRefGoogle Scholar
Donovan, S. K., Gordon, C. M., Veltkamp, C. J., and Scott, A. D. 1993. Crinoids, asteroids and ophiuroids in the Jamaican fossil record, p. 125130. In Wright, R. M. and Robinson, E. (eds.), Biostratigraphy of Jamaica. Geological Society of America Memoir, 182.Google Scholar
Donovan, S. K., Miller, S. A., Graham, A. P., and Dixon, H. L. 1994. New fossil crinoids from Jamaica. Journal of Paleontology, 68:842845.CrossRefGoogle Scholar
Donovan, S. K., Harper, D. A. T., Pickerill, R. K., Portell, R. W., and Jackson, T. A. 2000. How deep? Determination of depth of deposition, with an example from the Cenozoic of the Lesser Antilles. Geological Society of America Annual Meeting, Reno, Nevada, 13–16 November. Geological Society of America Abstracts with Programs, 32(7):A197.Google Scholar
Gislén, T. 1924. Echinoderm studies. Zoologiska bidrag från Uppsala, 9:316 p.Google Scholar
Hendler, G., Miller, J. E., Pawson, D. L., and Kier, P. M. 1995. Sea Stars, Sea Urchins, and Allies: Echinoderms from Florida and the Caribbean. Smithsonian Institution Press, Washington, D.C., 390 p.Google Scholar
Hess, H. 1999. Tertiary, p. 233236. In Hess, H., Ausich, W. I., Brett, C. E., and Simms, M. J. (eds.), Fossil Crinoids. Cambridge University Press, Cambridge, England.CrossRefGoogle Scholar
Jablonski, D., and Bottjer, D. J. 1988. Onshore-offshore evolutionary patterns in post-Paleozoic echinoderms: a preliminary analysis, p. 8190. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology: Proceedings of the 6th International Echinoderm Conference, Victoria, British Columbia, 23–28 August, 1987. Balkema, Rotterdam.Google Scholar
Jackson, T. A. 1970. Geology and petrology of the volcanic rocks of Carriacou, Grenadines, West Indies. Unpublished M.Sc. thesis. University of the West Indies, Mona, 102 p.Google Scholar
Jagt, J. W. M. 1999. Late Cretaceous-early Palaeocene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—Pt. 2: crinoids. Scripta Geologica, 116:59255.Google Scholar
Jung, P. 1971. Fossil mollusks from Carriacou, West Indies. Bulletins of American Paleontology, 61(269):147262Google Scholar
Kier, P. M. 1966. Four new Eocene echinoids from Barbados. Smithsonian Miscellaneous Collections, 151(9):128Google Scholar
Klikushin, V. G. 1985 (for 1984). Fossil sea lilies of the suborder Hyocrinina. Paleontological Journal, 18(3):6982. [Translated from Russian: Iskopayemyye morskiye lilii podotryada Hyocrinina. Paleontologicheskii Zhurnal, 18(3):74–85.]Google Scholar
Klikushin, V. G. 1987. Crinoids from the Middle Liassic Rosso ammonitico beds. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 175:235260.Google Scholar
Lehner, E. 1935. Report on the Possibilities of Establishing an Artesian Water Supply for the Island of Carriacou, with Appended Notes on the General Geology of Carriacou. Government Printing Office, St. George's, Grenada, 6 p.Google Scholar
Liddell, W. D. 1975. Recent crinoid biostratinomy. Geological Society of America Abstracts with Programs, 7(7):1169.Google Scholar
Loriol, P. DE 1882–1884. Paléontologie Française, ou Description des Fossiles de la France, Série 1, Animales Invertébrés. Terrain Jurassique. 11. Crinoïdes. G. Masson, Paris, 627 p.Google Scholar
Macurda, D. B. Jr., and Roux, M. 1981. The skeletal morphology of the isocrinid crinoids Annacrinus wyvillethomsoni and Diplocrinus maclearanus . Contributions from the Museum of Paleontology, University of Michigan, 25:169219.Google Scholar
Martin-Kaye, P. H. 1958. The geology of Carriacou. Bulletins of American Paleontology, 38(175):395405Google Scholar
Messing, C. G. 1994. In situ stalk growth and sediment production rates in a living stalked crinoid (Chladocrinus decorus) (Echinodermata). Geological Society of America Abstracts with Programs, 26(7):A428.Google Scholar
Messing, C. G. 1997. Living comatulids, p. 330. In Waters, J. A. and Maples, C. G. (eds.), Geobiology of Echinoderms. The Paleontological Society Papers, 3.Google Scholar
Messing, C. G., David, J., Baumiller, T. K., Roux, M., and Ameziane, M. 2000. Stalk growth rates of Isocrinidae (Echinodermata: Crinoidea): a summary of a decade of in situ experiments. Programme and Abstracts, 10th International Echinoderm Conference, University of Otago, Dunedin, New Zealand:73.Google Scholar
Meyer, D. L., Messing, C. G., and Macurda, D. B. Jr. 1978. Zoogeography of tropical western Atlantic Crinoidea (Echinodermata). Bulletin of Marine Science, 28:412441.Google Scholar
Meyer, H. Von. 1836. Mittheilungen an Professor Bronn gerichtet. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrfaktenkunde, 1836:5561.Google Scholar
Miller, J. S. 1821. A Natural History of the Crinoidea or Lily-Shaped Animals, with Observations on the Genera Asteria, Euryale, Comatula and Marsupites . Bryan and Co., Bristol, 150 p.Google Scholar
Moore, R. C., Jeffords, R. M., and Miller, T. H. 1968. Morphological features of crinoid columns. University of Kansas Paleontological Contributions, Echinodermata Article 8:130.Google Scholar
Moore, R. C., Ubaghs, G., Breimer, A., and Lane, N. G. 1978. Glossary of crinoid morphological terms, p. T229, T231, T233T242. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Oji, T. 1989. Growth rate of stalk of Metacrinus rotundus (Echinodermata: Crinoidea) and its functional significance. Journal of the Faculty of Science, University of Tokyo (sec. II), 22:3951.Google Scholar
Oji, T. 1990. Miocene Isocrinidae (stalked crinoids) from Japan and their biogeographic implications. Transactions and Proceedings of the Palaeontological Society of Japan, new series, no. 157:412429.Google Scholar
Orbigny, A. D. D'. 1837. Mémoire sur une seconde espéce vivante de la familie des crinoïdes ou encrines, servant de type au nouveau genera Holope (Holopus). Magasine de Zoologie, 10:8 p.Google Scholar
Paul, C. R. C., and Donovan, S. K. 1988. Crinoids, p. 208234. In Smith, A. B., Paul, C. R. C., Gale, A. S., and Donovan, S. K. (eds.), Cenomanian and Lower Turonian echinoderms from Wilmington, southeast Devon, England. Bulletin of the British Museum (Natural History), Geology, 42.Google Scholar
Perrier, J. O. E. 1883. Sur un nouveau crinoïde fixé, le Democrinus parfaiti, provenant des dragages du “Travailleur”. Compte rendu de l'Academie Sciences, Paris, 96:450452.Google Scholar
Poole, E. G., and Barker, L. H. 1983. Geology of Barbados (1:50,000 sheet). Directorate of Overseas Surveys, U.K. and Government of Barbados, Bridgetown.Google Scholar
Rasmussen, H. W. 1961. A monograph on the Cretaceous Crinoidea. Det Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, 12(1):428 p.Google Scholar
Rasmussen, H. W. 1978. Articulata, p. T813T927. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(3). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Robinson, E., and Jung, P. 1972. Stratigraphy and age of marine rocks, Carriacou, West Indies. American Association of Petroleum Geologists Bulletin, 56:114127.Google Scholar
Roux, M. 1977. The stalk-joints of Recent Isocrinidae (Crinoidea). Bulletin of the British Museum (Natural History), Zoology, 32:4564.Google Scholar
Roux, M. 1980. Les articulations du pédoncule des Hyocrinidae (Échinodermes, Crinoïdes pédonculés): intérět systématique et conséquences. Bulletin du Museum Nationale d'Histoire Naturelle, Paris (4th series), 2:3157.Google Scholar
Sánchez Roig, M. 1926. Contribucion a la paleontologia Cubana: los equinodermos fǒsiles de Cuba. Boletin de Minas, Habana, 10:1179.Google Scholar
Sánchez Roig, M. 1949. Los equinodermos fosiles de Cuba. Paleontología Cubana, 1:1302.Google Scholar
Sieverts-Doreck, H. 1952. In Moore, R. C., Lalicker, C. G., and Fischer, A. G. (eds.), Invertebrate Fossils. McGraw-Hill, New York, 766 p.Google Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids, p. 269284. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Simms, M. J. 1989 (for 1988). British Lower Jurassic crinoids. Monograph of the Palaeontographical Society, London, 142(581):103 p.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Simms, M. J., Gale, A. S., Gilliland, P., Rose, E. P. F., and Sevastopulo, G. D. 1993. Echinodermata, p. 491528. In Benton, M. J. (ed.), The Fossil Record 2. Chapman and Hall, London.Google Scholar
Speed, R. C. 1988. Geologic history of Barbados: a preliminary synthesis, p. 29.129.11. In Barker, L. H. (ed.), Transactions of the 11th Caribbean Geological Congress, Bridgetown, Barbados, 20th–26th July, 1986. Barbados.Google Scholar
Speed, R. C. 1994. Barbados and the Lesser Antilles Forearc, p. 179192. In Donovan, S. K. and Jackson, T. A. (eds.), Caribbean Geology: An Introduction. University of the West Indies Publishers’ Association, Kingston.Google Scholar
Speed, R. C., Smith-Horowitz, P. L., Perch-Nielsen, K. V. S., Saunders, J. B., and Sanfilippo, A. B. 1993. Southern Lesser Antilles Arc Platform: pre-late Miocene stratigraphy, structure, and tectonic evolution. Geological Society of America Special Paper, 277:198.CrossRefGoogle Scholar
Springer, F. 1924. A Tertiary crinoid from the West Indies. Proceedings of the United States National Museum, 65(2516):8 p.CrossRefGoogle Scholar
Trechmann, C. T. 1935. The geology and fossils of Carriacou, West Indies. Geological Magazine, 72:529555.CrossRefGoogle Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wadge, G. 1994. The Lesser Antilles, p. 167177. In Donovan, S. K. and Jackson, T. A. (eds.), Caribbean Geology: An Introduction. University of the West Indies Publishers’ Association, Kingston.Google Scholar
Webster, G. D. 1974. Crinoid pluricolumnal noditaxis patterns. Journal of Paleontology, 48:12831288.Google Scholar
Wyville Thomson, C. 1864. Sea lilies. Intellectual Observer, 6:111.Google Scholar
Zittel, K. A. Von. 1876–1880. Handbuch der Paläontologie, Band 1, Paläozoologie 1. Oldenbourg, Munich and Leipzig, vii+765 p.Google Scholar