Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T03:26:36.805Z Has data issue: false hasContentIssue false

Anchicodium Johnson: branched or phylloid?

Published online by Cambridge University Press:  20 May 2016

Andrew M. Torres
Affiliation:
Department of Botany and Kansas Geological Survey University of Kansas, Lawrence 66045
D. L. Baars
Affiliation:
Department of Botany and Kansas Geological Survey University of Kansas, Lawrence 66045

Abstract

Membranous phylloid algae of the late Paleozoic have commonly been identified as Anchicodium Johnson, whereas the genus was originally described as being cylindrical and branched, much like modern Codium. The holotypes cannot be located, but examination of one lectotype specimen and neotypic thin sections from material from several of Johnson's original collection sites indicates that the original descriptions were valid.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baars, D. L. 1968. Nature of calcification in codiacean algae. American Association of Petroleum Geologists Bulletin, 52:518.Google Scholar
Bassoullet, J. P., Bernier, P., Deloffre, R., Genot, P., Poncet, J., and Roud, A. 1983. Les algues udoteacees du Paleozoique au Cenozoique. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine 7, 2:449621.Google Scholar
Bold, H. C., and Wynne, A. J. 1985. Introduction to the Algae, 2nd edition. Prentice-Hall, Englewood Cliffs, New Jersey, 720 p.Google Scholar
Crowley, D. J. 1969. Algal-bank complex in Wyandotte Limestone (Late Pennsylvanian) in eastern Kansas. State Geological Survey of Kansas Bulletin 198, 52 p.Google Scholar
Johnson, J. H. 1946. Lime-secreting algae from the Pennsylvanian and Permian of Kansas. Geological Society of America Bulletin, 57:10871120.Google Scholar
Kirkland, B. L., Moore, C. H. Jr., and Dickson, J. A. D. 1991. Aragonitic Pennsylvanian phylloid algae from New Mexico: the missing link. American Association of Petroleum Geologists Bulletin, 75:610.Google Scholar
Konishi, K., and Wray, J. L. 1961. Eugonophyllum, a new Pennsylvanian and Permian algal genus. Journal of Paleontology, 35:659666.Google Scholar
Laporte, L. F. 1962. Paleoecology of the Cottonwood Limestone (Permian), northern Mid-Continent. Geological Society of America Bulletin, 73:521544.Google Scholar
Mu, X. 1991. Fossil Udoteaceae and Gymnocodiaceae, p. 146166. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, New York.Google Scholar
Pray, L. C., and Wray, J. L. 1963. Porous algal facies (Pennsylvanian) Honaker Trail, San Juan Canyon, Utah. Four Corners Geological Society, Fourth Field Conference, p. 204234. Durango.Google Scholar
Shuysky, V. P. 1987. Green algae (Chlorophyta), p. 38109. In Dubatolov, V. I. (ed.), Fossil Calcareous Algae. Akademiia Nauk USSR Sibirskoe Otdelenie. Trudy Instituta Geologii i Geofiziki, 674.Google Scholar
Torres, A. M., and Baars, D. L. 1992. Using the term utricle. Journal of Paleontology, 66:688.Google Scholar
Torres, A. M., West, R. R., and Sawin, R. S. 1992. Calcipatera cottonwoodensis, a new membranous late Paleozoic alga. Journal of Paleontology, 66:678681.Google Scholar
Wilbur, K. M., Colinvaux, L. H., and Watabe, N. 1969. Electron microscope study of calcification in the alga Halimeda (order Siphonales). Phycologia, 8:2735.Google Scholar
Wray, J. L. 1977. Calcareous Algae. Elsevier, New York, 185 p.Google Scholar
Zeller, D. E. (ed.). 1968. The stratigraphic succession in Kansas. State Geological Survey of Kansas Bulletin 189, 81 p.Google Scholar