Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T01:15:40.813Z Has data issue: false hasContentIssue false

UWB and MEMS Based Indoor Navigation

Published online by Cambridge University Press:  26 June 2008

Sylvain Pittet
Affiliation:
(Ecole Polytechnique Fédérale de Lausanne)
Valérie Renaudin*
Affiliation:
(Ecole Polytechnique Fédérale de Lausanne)
Bertrand Merminod
Affiliation:
(Ecole Polytechnique Fédérale de Lausanne)
Michel Kasser
Affiliation:
(Ecole Nationale des Sciences Géographiques)
*

Abstract

Thanks to its physical characteristics, Ultra-wideband (UWB) is one of the most promising technologies for indoor pedestrian navigation. UWB radio localisation systems however experience multipath phenomena that decrease the precision and the reliability of the user's location. To cope with complex indoor environments, UWB radio signals are coupled with inertial measurements from Micro Electro Mechanical Sensors (MEMS) in an extended Kalman filter. Improved performances of the filter are presented and compared with reference trajectories and with pure inertial solutions. Only specific selection methods enable this improvement by detecting and removing outliers in the raw localisation data.

Type
Research Article
Copyright
Copyright © The Royal Institute of Navigation 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aminian, K. and Najafi, B. (2004). Capturing human motion using body fixed sensors: outdoor measurement and clinical applications, Computer animated Virtual Worlds, 15, 7994.CrossRefGoogle Scholar
Denis, B. (2005). Exploitation des Capacités de Radiolocalisation des Transmissions Ultra-Large Bande dans les Réseaux Sans-Fil. PhD thesis in Institut National des Sciences Appliquées de Rennes, F.Google Scholar
Evennou, F. (2007). Techniques et technologies de localisation avancées pour terminaux mobiles dans les environnements indoor. PhD thesis in Université Joseph Fourier, Grenoble, F.Google Scholar
Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V. and Sahinoglu, Z. (2005). Localisation via Ultra-Wideband Radios, A look at positioning aspects of future sensor networks. IEEE Signal Processing Magazine, 22, 7084.CrossRefGoogle Scholar
Gustafsson, F. and Gunnarsson, F. (2005). Mobile Positioning Using Wireless Networks. IEEE Signal Processing Magazine, 22, 4153.Google Scholar
Mezentsev, O., Collin, J., Kuusniemi, H., and Lachapelle, G. (2004). Accuracy Assessment of High Sensivity GPS Based Pedestrian Navigation System aided by Low Cost Sensors. Proceedings of the 11th International Conference on Integrated Navigation Systems, Saint Petersburg, RU.Google Scholar
Renaudin, V., Merminod, B. and Kasser, M. (2007). Techniques de localisation intra-muros à transmission Ultra Large Bande. XYZ, 111, 1419.Google Scholar
Renaudin, V., Yalak, O., Tomé, P. and Merminod, B. (2007). Indoor Navigation of Emergency Agents. European Journal of Navigation, 5, 3645.Google Scholar
Renaudin, V., Yalak, O. and Thomé, P. (2007). Hybridization of MEMS and Assisted GPS for Pedestrian Navigation. Inside GNSS, 2, 3442.Google Scholar
Welch, T. B., Musselman, R. L., Emessiene, B. A., Gift, P. D., Choudhury, D. K., Cassadine, D. N. and Yano, S. M. (2002). The Effects of the Human Body on UWB Signal Propagation in an Indoor Environment. IEEE Journal on Selected Areas in Communications, 20, 17781782.CrossRefGoogle Scholar
Zhang, Y. P., Bins, L. and Qi, C. (2007). Characterization of On-Human-Body UWB Radio Propagation Channel. Microwave and Optical Technology Letters, 49, 13651371.Google Scholar