Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T08:16:03.449Z Has data issue: false hasContentIssue false

Use of pulsars for ship navigation: an alternative to the sextant

Published online by Cambridge University Press:  22 August 2022

Janusz Adamson*
Affiliation:
Independent Researcher

Abstract

A new method is proposed for determining a ship's position at sea using naturally occurring pulsar signals to provide an alternative to the sextant. Use is made of four distinct pulsar radio signals whose timing stabilities are comparable to atomic clocks and whose characteristic signatures can be used as natural radio navigation beacons. Pulse peak time difference measurements, accurate to within 10−5 and 10−6 s, were generated for a key reference observatory which provides long-term pulsar timing observations and for the unknown ship location. These time differences when multiplied by the velocity of light provide a distance value that is fundamental in calculating the ship's position. Resultant simulations provided a position accuracy to ≈1⋅1 km (≈0⋅6 nm) for the higher timing difference measurement. A single-pulsar-based approach, which gave a position accuracy to ≈2⋅8 km (≈1⋅5 nm), was also investigated for affordable equipment solutions and comparison with NASA space-based navigation experiments.

Type
Research Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, J. (1976). Computations of satellite trajectories. MPhil thesis, Department of Mathematics & Computing Studies, Sunderland Polytechnic/University, UK.Google Scholar
Adamson, J. (2019). The Use of Pulsars for Ship Navigation – an Alternative to the Sextant, International Navigation Conference, Edinburgh, UK. https://navisp.esa.int/uploads/files/documents/5de90dd1a4049233214212.pdfGoogle Scholar
Becker, W., Bernhardt, M. G. and Jessner, A. (2013). Autonomous Spacecraft Navigation with Pulsars. http://www.esa.int/gsp/ACT/doc/ACTAFUTURA/AF07/papers/AF07.2013.11.pdfGoogle Scholar
Becker, W., Kramer, M. and Sesana, A. (2018). Pulsar timing and its application for navigation and gravitational wave detection. Space Science Reviews, 214, 30. doi:10.1007/s11214-017-0459-0CrossRefGoogle Scholar
Bernhardt, M. G., Becker, W., Prinz, T., Breithuth, F. M. and Walter, U. (2011). Autonomous Spacecraft Navigation Based on Pulsar Timing Information. München: Max-Planck-Institut für extraterrestrische Physik, & Institute of Astronautics, Technische Universität München, Germany. https://mafiadoc.com/autonomous-spacecraft-navigation-based-on-pulsar-timing_5cb5f3e0097c47f67b8b45a2.html 10.1109/ICSpT.2011.6064649CrossRefGoogle Scholar
Blakey, J. (1958). University Mathematics. Sunderland University, Sunderland: Blackey & Son Ltd.Google Scholar
Brito, D., Fernandes, J. and Tavares, G. (2015). A Study on the Accuracy of Radio Pulsar Navigation Systems. Portugal: INESC-ID, Instituto Superior Tecnico, Universidade de Lisboa, Portugal. https://www.researchgate.net/publication/323219386Google Scholar
Buist, P., Hesselink, H., Gibbs, A., Keuning, M., Gaubitch, N., Noroozi, A., Bentum, M. J., Verhoeven, C., Heusdens, R., Fernandes, J., Kabakchiev, H. and Kestilä, A. (2014). PulsarPlane: a Feasibility Study for Millisecond Radio Pulsar Navigation. In Proceedings of the 65th International Astronautical Congress (IAC2014) (pp. 1–10). International Astronautical Federation (IAF).Google Scholar
Buist, P., Hesselink, H., Oving, B., Zelle, H., Verbeek, R., Noroozi, A., Verhoeven, C., Heusdens, R., Gaubitch, N., Engelen, S., Kestilä, A., Fernandes, J., Brito, D., Tavares, G., Kabakchiev, H., Kabakchiev, D., Vasilev, B., Behar, V. and Bentum, M. (2015). PulsarPlane, Netherlands Aerospace Centre, Amsterdam, www.pulsarplane.eu, NLR-CR-2015-243- (europa.eu). https://cordis.europa.eu/docs/results/335/335063/final1-d5-4-final-report.pdfGoogle Scholar
Capitaine, N. and Wallace, P. (2009). SYRTE, Implementation of the IAU2000 Definition of UT1 in Astronomy. Observatoire de Paris, STFC/RAL, JD06, IAU GA 2009, Rio de Janeiro, Brazil, August 2009.Google Scholar
Chen, P. (2018). Pulsar-Based Navigation and Timing: Analysis and Estimation. Los Angeles, USA: UCLA. https://escholarship.org/uc/item/8jm6v2x9Google Scholar
Condon, J. J. and Ransom, S. M. (2010). Essential Radio Astronomy, Chapter 6 Pulsars. https://www.cv.nrao.edu/~sransom/web/Ch6.htmlGoogle Scholar
Deakin, R. E. (2012). Great Elliptic Arc Distance. School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia.Google Scholar
Deakin, R. E. and Hunter, M. N. (2013). Geometric Geodesy Part A. School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Australia.Google Scholar
Dell'Immagine, A. (2015). Pulsar observations of PSR B0329+54 by (IW5BHY). www.neutronstar.joataman.net/sites/iw5bhy_barga/index.htmlGoogle Scholar
Deng, X., Chippendale, A. P., Hobbs, G., Johnston, S., Dai, S., George, D., Kramer, M., Karuppusamy, R., Malenta, M., Spitler, L., Tzioumis, T. and Wieching, G. (2018). Observing Pulsars with Phased Array Feed at the Parkes Telescope. Parkes, New South Wales, Australia: Astronomical Society of Australia.Google Scholar
Dong, J. (2018). Pulsar Navigation in the Solar System. [0812.2635], Kunming, Yunnan, China. Pulsar Navigation in the Solar System (arxiv.org).Google Scholar
Downs, G. S. (1974). Interplanetary Navigation Using Pulsating Radio Sources. NASA Technical Report 32-1594, 1974, 19740026037.pdf (nasa.gov). https://ntrs.nasa.gov/api/citations/19740026037/downloads/19740026037.pdfGoogle Scholar
Gebhardt, C. (2020). Carrington Event still Provides Warning of Sun's Potential 161 Years Later. NASA Spaceflight.com. https://www.nasaspaceflight.com/2020/08/carrington-event-warningGoogle Scholar
Getchius, J., Long, A., Farahmand, M., Winternitz, L., Hassouneh, M. A. and Mitchell, J. W. (2019). Predicted Performance of an X-Ray Navigation System for Future Deep Space and Lunar Missions. AAS 19-097. https://strives-uploads-prod.s3.us-gov-west-1.amazonaws.com/20190000639/20190000639.pdf?AWSAccessKeyId=AKIASEVSKC45ZTTM42XZ&Expires=1600876300&Signature=HGfkJSTiYKneOjF7R69VNJDbLDs%3DGoogle Scholar
GPS.gov. (2021). Other Global Navigation Satellite Systems. https://www.gps.gov/systems/gnssGoogle Scholar
Hecht, M., Cahoy, K. and Fish, V. (2016). A Tall Ship and a Star to Steer Her By. A Phase I NIAC Award to Solicitation NNH15ZOA001N-15NIAC-A1 Project no: NNX15AL83G, MIT Haystack Observatory, Westford, Massachusetts, USA.Google Scholar
Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E. and Jordan, C. (2004). Long-term timing observations of 374 pulsars. Monthly Notices of the Royal Astronomical Society, 353, 13111344.CrossRefGoogle Scholar
Hobbs, G., Miller, D., Manchester, R. N., Dempsey, J., Chapman, J. M., Khoo, J., Applegate, J., Bailes, M., Bhat, N. D. R., Bridle, R., Borg, A., Brown, A., Burnett, C., Camilo, F., Cattalini, C., Chaudhary, A., Chen, R., D'Amico, N., Kedziora-Chudczer, L., Cornwell, T., George, R., Hampson, G., Hepburn, M., Jameson, A., Keith, M., Kelly, T., Kosmynin, A., Lenc, E., Lorimer, D., Love, C., Lyne, A., McIntyre, V., Morrissey, J., Pienaar, M., J. Reynolds, J., Ryder, G., Sarkissian, J., Stevenson, A., Treloar, A., van Straten, W., Whiting, M. and Wilson, G. (2011). The parkes observatory pulsar data archive. Publications of the Astronomical Society of Australia, 28(3), 202214.10.1071/AS11016CrossRefGoogle Scholar
IBM. (2020). IBM Cloud Education, What Is Monte Carlo Simulation? Australia: IBM. https://towardsdatascience.com/monte-carlo-simulation-a-practical-guide-85da45597f0eGoogle Scholar
Intertanko (2019). Jamming and Spoofing of Global Navigation Satellite Systems (GNSS). https://www.maritimeglobalsecurity.org/media/1043/2019-jamming-spoofing-of-gnss.pdfGoogle Scholar
Jessner, A. (1974). Technical requirements for autonomous spacecraft navigation using radio pulsars, Bonn. 7. Jessner - Technical requirements.pdf (mpg.de).Google Scholar
Kaplan, G. H. (2005). The IAU Resolutions on Astronomical Reference Systems, Time Scales, and Earth Rotation Models. U.S. Naval Observatory, Circular No. 179. https://apps.dtic.mil/dtic/tr/fulltext/u2/a434096.pdf 10.21236/ADA434096CrossRefGoogle Scholar
Langley, R. B. (1991). The Mathematics of GPS. Fredericton, Canada: University of New Brunswick, Canada. http://gauss.gge.unb.ca/gpsworld/EarlyInnovationColumns/Innov.1991.07-08.pdfGoogle Scholar
Lorimer, D. R. (2008). Binary and millisecond pulsars. Living Reviews in Relativity, 11(8), 21. http://www.livingreviews.org/lrr-2008-8CrossRefGoogle ScholarPubMed
Macbeath, A. M. (1966). Elementary Vector Algebra. Birmingham University, Birmingham: Oxford University Press.Google Scholar
Medina, D., Lass, C., Marcos, E. P., Ziebold, R., Closas, P. and Garc, J. (2019). On GNSS Jamming Threat from the Maritime Navigation Perspective. *PID5970873.pdf (dlr.de), also https://ieeexplore.ieee.org/iel7/8977236/9011156/09011348.pdfCrossRefGoogle Scholar
Meeus, J. (1998). Astronomical Algorithms (2nd ed.). Richmond, VA: Willmann-Bell.Google Scholar
Météo-France. (2019). Drift prediction at sea: the French operational system. National Forecasting Centre of Météo-France. http://www.meteorologie.eu.org/mothy/Google Scholar
Mitchell, J. W., Luke, B., Winternitz, L. B., Hassouneh, M. A., Price, S. R., Semper, S. R., Yu, W. H., Ray, P. S., Wolff, M. T., Kerr, M., Wood, K. S., Arzoumanian, Z., Gendreau, K. C., Guillemot, L. and Cognard, I. (2018). American Astronautical Society 41st Annual Guidance and Control Conference, Beaver Run Resort, Breckenridge, CO, 7 February 2018. SEXTANT X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results. https://ntrs.nasa.gov/api/citations/20180001253/downloads/20180001253.pdfGoogle Scholar
Nature Astronomy. (2017). On the pulse of discovery. Nature Astronomy, 1, 807. doi:10.1038/s41550-017-0343-6CrossRefGoogle Scholar
Radio Astronomy Frequencies. (2008). Radioastronomy - Frequencies List (astrosurf.com). David Malin, Luxorion Project, Astrosurf. http:/www.astrosurf.com/luxorion/radioastro-frequencieslist.htmGoogle Scholar
ITU-R. (2013). Radio Observations of Pulsars for Precision Timekeeping. Report ITU-R RA.2099-1. International Timekeeping Union, Geneva, Switzerland. https://extranet.itu.int/brdocsearch/R-REP/R-REP-RA/R-REP-RA.2099/R-REP-RA.2099-1-2013/R-REP-RA.2099-1-2013-MSW-E.docxGoogle Scholar
Ray, P. S., Wood, K. S. and Phlips, B. F. (2006). Spacecraft Navigation Using X-Ray Pulsars. Washington, D. C.: Naval Research Laboratory. https://apps.dtic.mil/sti/pdfs/ADA523788.pdfGoogle Scholar
Roy, A. E. (1965). The Foundations of Astrodynamics. New York: Macmillan.Google Scholar
Seeber, G. (2003). Satellite Geodesy (2nd ed.). Berlin, New York: Walter de Gruyter.10.1515/9783110200089CrossRefGoogle Scholar
Sheikh, S. I., Pines, D. J., Ray, P. S., Wood, K. S., Lovellette, M. N. and Wolff, M. T. (2006). Spacecraft navigation using X-ray pulsars. Journal of Guidance, Control, and Dynamics, 29(1), 4963.CrossRefGoogle Scholar
Smart, W. M. (1965). Text-Book on Spherical Astronomy. Glasgow University, Glasgow: Cambridge University Press.Google Scholar
Topping, J. (1966). Errors of Observation and Their Treatment. London: Brunel College of Technology, Chapman & Hall Ltd.Google Scholar
Vidal, V. (2017). Pulsar positioning system: A quest for evidence of extra-terrestrial engineering. International Journal of Astrobiology, 18, 213234. doi:10.1017/S147355041700043XCrossRefGoogle Scholar
Wallace, P. T. and Capitaine, N. (2006). Precession-nutation procedures consistent with IAU 2006 resolutions. https://www.researchgate.net/publication/41705280_Precession-nutation_procedures_consistent_with_IAU_2006_resolutions 10.1051/0004-6361:20065897CrossRefGoogle Scholar
Zhang, X., Shuai, P., Huang, L., Chen, S. and Xu, L. (2017). Mission overview and initial observation results of the X-ray Pulsar Navigation-1 satellite. Hindawi International Journal of Aerospace Engineering, 2017, 8561830. doi:10.1155/2017/8561830Google Scholar
Zieleniewski Adamson, J. (1974). Requirements for a Doppler satellite navigation system. Journal of the British Interplanetary Society (JBIS). September 1974.Google Scholar