Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T06:16:51.088Z Has data issue: false hasContentIssue false

A Real-Time Ship Manoeuvring Simulation Study for the Strait of Istanbul (Bosporus)

Published online by Cambridge University Press:  01 September 1999

Kadir Sarıöz
Affiliation:
Faculty of Naval Architecture and Ocean Engineering Istanbul Technical University
Abdi Kükner
Affiliation:
Faculty of Naval Architecture and Ocean Engineering Istanbul Technical University
Ebru Narlı
Affiliation:
Faculty of Naval Architecture and Ocean Engineering Istanbul Technical University

Abstract

During the past thirty years, there has been a steady growth in the size and number of ships that use the Strait of Istanbul (Bosporus), which is one of the most difficult, crowded, and potentially dangerous waterways in the world. There have been over two hundred accidents over the past decade resulting in loss of life and serious damage to the environment. Many of the proposed export routes for forthcoming production from the Caspian sea region pass westwards through the Black Sea and the Bosporus en-route to the Mediterranean Sea and world markets. The risks and dangers associated with tanker navigation, maritime accidents and environmental catastrophe are aggravated with the increase in the density of traffic, tanker size and cargo capacity, as well as the nature of the cargo. In order to ease the problem, a Traffic Separation Scheme (TSS) was established and approved by IMO in 1994. This scheme has drastically reduced the number of collisions. However, one-way or two-way suspension of traffic in the Bosporus is inevitable for ships that cannot comply with the TSS because of their type, size or poor manoeuvring characteristics. The selection of size criteria to comply with the TSS has been a matter of discussion. This paper presents the results of a real-time simulation study investigating the manoeuvring performance of large tankers in the Bosporus. The study was conducted with a simulator capable of subjecting a given hull form to any combination of environmental conditions, i.e. wind, current and wave drift forces. The results indicate that, when realistic environmental conditions are taken into account, the size of ships that can navigate safely in compliance with the traffic separation lanes is limited.

Type
Research Article
Copyright
© 1999 The Royal Institute of Navigation

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)